Logic, Types and Spaces

Towards homotopy type theory

Fin Type Family

We briefly saw the Fin type family when constructing trees. We clarify and elaborate on its construction.

The Fin type family is indexed by natural numbers $\mathbb{N}$. For $n : \mathbb{N}$, $Fin(n)$ is a finite type with $n$ elements, corresponding to the integers $k$ with $0 \leq k < n$. We denote by $[k]_n$ the element corresponding to the natural number $k$ in $Fin(n)$. Note that $[1]_2$ and $[1]_3$ are not the same term even though they correspond to the same natural number.

We define $Fin$ as an inductive type family with two constructors. In Agda, this is as follows.

1
2
3
data Fin :   Type where
  fzero : {n : }  Fin (succ n)
  fsucc : {n : }  Fin n  Fin (succ n)

The constructors are similar to the $zero$ and $succ$ constructors for natural numbers. However, as remarked earlier, $[0]_2$ and $[0]_3$ are not the same term, so the constructor $fzero$ takes an argument specifying the type of the term constructed. Since $Fin(0)$ does not have a term corresponding to $0$, but $Fin(k)$ does for $k \geq 1$, we set $fzero(n) = [0]_{n +1}$. Formally, as usual, we only specify the type of $fzero$ and declare it to be a constructor.

The second constructor $fsucc$ takes $[k]_n$ to $[ k + 1]_{n +1}$. On the associated natural numbers, this is just the successor function. However it maps the type $Fin(n)$ to the type $Fin(n+1)$ - as one should expect since, given $0 \leq k < n$, we need not have $k + 1 <n$, but always have $0 \leq k+1 \leq n +1$.

Note that if $0\leq k <n$, then there is unique way to obtain $[k]_n$ using the given constructors, namely (using powers to denote iterated application) $[k]_n = fsucc^k (fzero (n -k -1))$.

By a recursive definition, we can define the function $[k]_n \mapsto k$.

1
2
3
_as : {n : }  Fin n  
fzero as = 0
(fsucc k) as = succ (k as)

Comments