New companions to Gordon identities from commutative algebra

Pooneh Afsharijoo, Jehanne Dousse, Frédéric Jouhet & Hussein Mourtada

Introduction

A partition of a positive integer n is a non-increasing sequence of positive integers $\lambda = (\lambda_1, \lambda_2, \dots, \lambda_s)$ such that $\lambda_1 + \lambda_2 + \dots + \lambda_s = n$.

A famous family of partition identities which plays a central role in our paper [1], is due to Gordon:

Theorem 1: Gordon's identities ([6])

Let r and i be integers such that $r \geq 2$ and $1 \leq i \leq r$. Let $\mathcal{T}_{r,i}$ be the set of partitions $\lambda = (\lambda_1, \lambda_2, \dots, \lambda_s)$ where $\lambda_j - \lambda_{j+r-1} \geq 2$ for all j, and at most i-1 of the parts λ_j are equal to 1. Let $\mathcal{E}_{r,i}$ be the set of partitions whose parts are not congruent to $0, \pm i \mod (2r+1)$. Let n be a nonnegative integer, and let $T_{r,i}(n)$ (respectively $E_{r,i}(n)$) denote the number of partitions of n which belong to $\mathcal{T}_{r,i}$ (respectively $\mathcal{E}_{r,i}$). Then we have

$$T_{r,i}(n) = E_{r,i}(n).$$

We introduce a new companions $C_{r,i}(n)$ to these identities; This settles positively a conjecture made by the first author. By using the algebro-geometrical methods (see in [2], [3] and [9]) she defines the (i, ℓ) -new part of λ , note by $p_{i,\ell}(\lambda)$, and states:

Conjecture 1: (P. A. [2])

Let $r \geq 2$ and $1 \leq i \leq r$ be two integers. Let $\mathcal{C}_{r,i}$ be the set of partitions of the form $\lambda = (\lambda_1, \dots, \lambda_s)$, such that at most i-1 of the parts are equal to 1 and either $N_{r,i}(\lambda) < r-1$, or $N_{r,i}(\lambda) = r-1$ and $s \leq \sum_{j=1}^{r-1} p_{i,j}(\lambda) - (r-i)$. Let n be a nonnegative integer, and denote by $C_{r,i}(n)$ the number of partitions of n which belong to $\mathcal{C}_{r,i}$. Then we have

$$C_{r,i}(n) = T_{r,i}(n) = E_{r,i}(n).$$

Andrews–Gordon identities

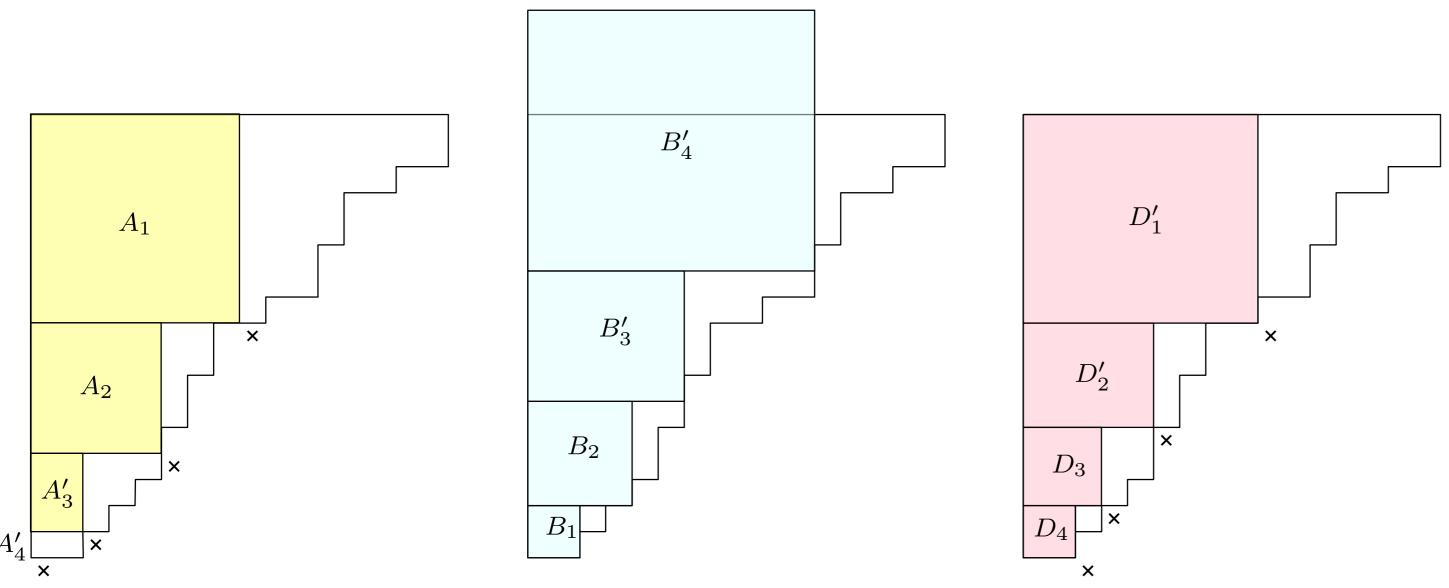


Figure 1: The three types of Durfee dissections

A *Durfee square* of a partition λ is the largest square of size $k \times k$ fitting in the top-left corner of the Young diagram of λ (see for instance A_1 in Figure 1). Similarly we can define its *vertical Durfee rectangle* to be the largest vertical rectangle of size $(k-1) \times k$ fitting in the top-left corner of its Young diagram.

When we choose to draw first i-1 Durfee squares, and then all the following ones the rectangles, the sequence of non-empty Durfee squares/rectangles in λ is uniquely defined and is called the (vertical) (i-1)-Durfee dissection of λ .

Theorem 2: Andrews [5]

Let $r \geq 2$ and $1 \leq i \leq r$ be two integers. Let $\mathcal{A}_{r,i}$ be the set of partitions such that in their vertical (i-1)Durfee dissection, all vertical Durfee rectangles below A'_{r-1} are empty, and such that the last row of each non-empty Durfee rectangle is actually a part of the partition. For all nonnegative integers n, denote by $A_{r,i}(n)$ the number of partitions of n which belong to $\mathcal{A}_{r,i}$. Then we have

$$A_{r,i}(n) = E_{r,i}(n).$$

The partition in Figure 1 is not in $A_{5,3}$. The analytic form of these identities can be stated for all integers

 $r \ge 2$ and $1 \le i \le r$ as:

$$\sum_{s_1 \ge \dots \ge s_{r-1} \ge 0} \frac{q^{s_1^2 + \dots + s_{r-1}^2 + s_i + \dots + s_{r-1}}}{(q)_{s_1 - s_2} \dots (q)_{s_{r-2} - s_{r-1}}(q)_{s_{r-1}}} = \frac{(q^{2r+1}, q^i, q^{2r-i+1}; q^{2r+1})_{\infty}}{(q)_{\infty}}.$$
 (1)

New Durfee-type dissections

In [1], we define the *bottom square* (resp. *bottom rectangle*) of a partition $\lambda = (\lambda_1, \dots, \lambda_s)$ to be the square of size $\lambda_s \times \lambda_s$ (resp. the horizontal rectangle of size $\lambda_s \times (\lambda_s - 1)$) whose bottom coincides with the bottom of the Young diagram of λ .

When we choose to draw first the i-1 bottom squares and then all following ones the rectangles, the sequence of non-empty bottom squares/rectangles in λ is uniquely defined and we call it the (i-1)-bottom dissection of λ (see for instance the middle of Figure 1 where the bottom rectangles above B'_{λ} are empty).

Let $\mathcal{B}_{r,i}$ be the set of partitions such that in their (i-1)-bottom dissection, all bottom rectangles above B'_{r-1} are empty. By definition of bottom squares/rectangles, for all $1 \le i \le r$, we have $\mathcal{B}_{r,i} = \mathcal{C}_{r,i}$ and so:

Conjecture 2: Reformulation of Conjecture 1 (P.A., J. D., F. J. & H. M. [1])

Let $r \ge 2$ and $1 \le i \le r$ be two integers. Then for all nonnegative integers n, we have $B_{r,i}(n) = A_{r,i}(n) = E_{r,i}(n)$.

Now define the *horizontal Durfee rectangle* of a partition λ to be the largest horizontal rectangle of size $k \times (k-1)$ fitting in the top-left corner of the Young diagram of λ .

When we choose to draw first k Durfee horizontal rectangles and then following all squares, the sequence of non-empty Durfee squares/rectangles in λ is uniquely defined and is called the k-Durfee dissection of λ .

Define $\mathcal{D}_{r,i}$ to be the set of partitions such that in their (r-i)-Durfee dissection, all Durfee squares below D_{r-1} are empty. For example, the partition in Figure 1 belongs to $\mathcal{D}_{5,3}$ but not to $\mathcal{D}_{4,3}$. We showed that the following holds.

Theorem 3: (P.A., J. D., F. J. & H. M. [1])

For $r \geq 2$ and $1 \leq i \leq r$ two integers, we have $\mathcal{B}_{r,i} = \mathcal{D}_{r,i}$.

Proof strategy for Conjecture 2

In [1], we computed the generating function for partitions in $\mathcal{D}_{r,i} = \mathcal{B}_{r,i}$ and we get (replacing $1 - q^{d_0}$ by 1)

$$\sum_{\substack{d_1 \ge \dots \ge d_{r-1} \ge 0}} \frac{q^{d_1^2 + \dots + d_{r-1}^2 - d_1 - \dots - d_{r-i}}}{(q)_{d_1 - d_2} \dots (q)_{d_{r-2} - d_{r-1}} (q)_{d_{r-1}}} (1 - q^{d_{r-i}}). \tag{2}$$

Our proof of Conjecture 2 actually consist in showing that the generating function (2) of $\mathcal{D}_{r,i}$ equals the infinite product which is the generating function for $\mathcal{E}_{r,i}$. This is done by proving the following theorem:

Theorem 4: (P.A., J. D., F. J. & H. M. [1])

For all integers r > 0 and $0 \le i \le r - 1$, we have:

$$\sum_{\substack{s_1 > \dots > s_{r-1} > 0}} \frac{q^{s_1^2 + \dots + s_{r-1}^2 - s_1 - \dots - s_i} (1 - q^{s_i})}{(q)_{s_1 - s_2 \dots (q)_{s_{r-2} - s_{r-1}}} (q)_{s_{r-1}}} = \frac{(q^{2r+1}, q^{r-i}, q^{r+i+1}; q^{2r+1})_{\infty}}{(q)_{\infty}}, \tag{3}$$

where for i = 0, the term $1 - q^{s_0}$ on the left-hand side is simply taken to be 1.

Indeed, the right-hand side (resp. left-hand side) of (3) is the generating series for $\mathcal{E}_{r,r-i}$ (resp. $\mathcal{D}_{r,r-i}$) obtained by taking r-i instead of i in the right-hand side of (1) (resp. in (2)).

This shows that Conjecture 2 (and therefore Conjecture 1) is an immediate consequence of Theorem 4 and Theorem 3.

Proof of Theorem 4 via the Bailey lattice

Fix a formal indeterminate a. Recall [7] that a Bailey pair $(\alpha_n, \beta_n)_{n\geq 0}$ related to a is a pair of sequences satisfying:

$$\beta_n = \sum_{j=0}^n \frac{\alpha_j}{(q)_{n-j} (aq)_{n+j}} \quad \forall n \in \mathbb{N}.$$
(4)

Theorem 5: Bailey lemma, special case

If (α_n, β_n) is a Bailey pair related to a, then so is (α'_n, β'_n) , where

$$\alpha_n' = a^n q^{n^2} \alpha_n$$
 and $\beta_n' = \sum_{j=0}^n \frac{a^j q^{j^2}}{(q)_{n-j}} \beta_j$.

Theorem 6: Bailey lattice, special case

If (α_n, β_n) is a Bailey pair related to a, then (α'_n, β'_n) is a Bailey pair related to a/q, where $\alpha'_0 = \alpha_0$,

$$\alpha'_n = (1-a)a^nq^{n^2-n}\left(\frac{\alpha_n}{1-aq^{2n}} - \frac{aq^{2n-2}\alpha_{n-1}}{1-aq^{2n-2}}\right) \quad \text{and} \quad \beta'_n = \sum_{j=0}^n \frac{a^jq^{j^2-j}}{(q)_{n-j}}\beta_j.$$

In [7], the following unit Bailey pair (related to a) is considered:

$$\alpha_n^{(0)} = \frac{(-1)^n q^{n(n-1)/2} (1 - aq^{2n})(a)_n}{(1 - a)(q)_n}, \qquad \beta_n^{(0)} = \delta_{n,0},$$

Iterating $r \ge 2$ times Theorem 5 for the unit Bailey pair (5) yields a new Bailey pair $(\alpha_n^{(r)}, \beta_n^{(r)})$ with

$$\alpha_n^{(r)} = a^{rn} q^{rn^2} \alpha_n^{(0)},$$

and

$$\beta_n^{(r)} = \sum_{n \ge s_1 \ge \dots \ge s_r \ge 0} \frac{a^{s_1 + \dots + s_r} q^{s_1^2 + \dots + s_r^2}}{(q)_{n - s_1}(q)_{s_1 - s_2} \dots (q)_{s_{r-1} - s_r}} \beta_{s_r}^{(0)}.$$

Applying the definition of a Bailey pair to $(\alpha_n^{(r)}, \beta_n^{(r)})$, letting $n \to \infty$ and taking a = 1 gives

$$\sum_{s=0}^{\infty} \frac{q^{s_1^2 + \dots + s_{r-1}^2}}{(q)_{s_1 - s_2 \dots (q)_{s_{r-1}}}} = \frac{(q^{2r+1}, q^r, q^{r+1}; q^{2r+1})_{\infty}}{(q)_{\infty}}.$$

by taking $q \to q^{2r+1}$, $z \to q^r$ in the Jacobi triple product identity [8, Appendix, (II.28)]

$$\sum_{j \in \mathbb{Z}} (-1)^j z^j q^{j(j-1)/2} = (q, z, q/z; q)_{\infty}.$$

Therefore we get the i=0 case of (3) (equivalently the i=r instance of (1)). In the same way, one gets the i=r-1 case of (3) (equivalently the i=1 instance of (1)) by choosing a=q above.

For the other cases, we use Theorem 6 obtained in [4, Corollary 4.2] by iterating r-i times Theorem 5, then using Theorem 6, and finally i-1 times Theorem 5 with a replaced by a/q, and at the end letting $n \to \infty$.

Taking at last a=q as done in [4] gives (1), while for proving (3) we need to choose a=1 and use a few computation tricks.

References

- [1] P. AFSHARIJOO, J. DOUSSE, F. JOUHET AND H. MOURTADA, "Andrews-Gordon identities and commutative algebra", preprint, arxiv.org/abs/2104.09422 (2021).
- [2] P. AFSHARIJOO, Looking for a new version of Gordon's identities, Ann. Comb. 25.3 (2021), pp. 543–571.
- [3] P. AFSHARIJOO AND H. MOURTADA, *Partition identities and application to infinite-dimensional Gröbner basis and vice versa*, Arc schemes and singularities. Hackensack, NJ: World Scientific (2020), pp. 145–161.
- [4] A. K. AGARWAL, G. E. ANDREWS AND D. M. BRESSOUD, *The Bailey lattice*. J. Indian Math. Soc. (N.S.) **51** (1987), pp. 57–73.
- [5] G. E. ANDREWS, Partitions and Durfee dissection, Amer. J. Math. 101.3 (1979),pp. 735–742.
- [6] G. E. ANDREWS, *The theory of partitions*, Cambridge Mathematical Library. Cambridge University Press, Cambridge, 1998. Reprint of the 1976 original.
- [7] G. E. ANDREWS, *q-series: their development and application in analysis, number theory, combinatorics, physics, and computer algebra*, CBMS Regional Conference Series in Mathematics. Published for the Conference Board of the Mathematical Sciences, Washington, DC, by the American Mathematical Society, Providence, RI, (1986), pp. xii+130.
- [8] G. GASPER AND M. RAHMAN, *Basic Hypergeometric Series*. Vol. 96. Second Edition, Encyclopedia of Mathematics And Its Applications. Cambridge University Press, Cambridge (2004).
- [9] C. BRUSCHEK, H. MOURTADA AND J. SCHEPERS, Arc spaces and the Rogers-Ramanujan identities, Ramanujan J. 30.1 (2013),pp. 9–38.