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Introduction
A partition of a positive integer n is a non-increasing sequence of positive integers λ = (λ1, λ2, . . . , λs) such
that λ1 + λ2 + · · · + λs = n.

A famous family of partition identities which plays a central role in our paper [1], is due to Gordon:

Theorem 1: Gordon’s identities ([6])
Let r and i be integers such that r ≥ 2 and 1 ≤ i ≤ r. Let Tr,i be the set of partitions λ = (λ1, λ2, . . . , λs)
where λj − λj+r−1 ≥ 2 for all j, and at most i − 1 of the parts λj are equal to 1. Let Er,i be the set of
partitions whose parts are not congruent to 0,±i mod (2r + 1). Let n be a nonnegative integer, and let
Tr,i(n) (respectively Er,i(n)) denote the number of partitions of n which belong to Tr,i (respectively Er,i).
Then we have

Tr,i(n) = Er,i(n).

We introduce a new companions Cr,i(n) to these identities; This settles positively a conjecture made by the
first author. By using the algebro-geometrical methods (see in [2], [3] and [9]) she defines the (i, `)-new part
of λ, note by pi,`(λ), and states:

Conjecture 1: (P. A. [2])
Let r ≥ 2 and 1 ≤ i ≤ r be two integers. Let Cr,i be the set of partitions of the form λ = (λ1, . . . , λs),
such that at most i − 1 of the parts are equal to 1 and either Nr,i(λ) < r − 1, or Nr,i(λ) = r − 1 and
s ≤

∑r−1
j=1 pi,j(λ)− (r− i). Let n be a nonnegative integer, and denote by Cr,i(n) the number of partitions

of n which belong to Cr,i. Then we have

Cr,i(n) = Tr,i(n) = Er,i(n).
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Figure 1: The three types of Durfee dissections

A Durfee square of a partition λ is the largest square of size k × k fitting in the top-left corner of the Young
diagram of λ (see for instance A1 in Figure 1). Similarly we can define its vertical Durfee rectangle to be the
largest vertical rectangle of size (k − 1)× k fitting in the top-left corner of its Young diagram.

When we choose to draw first i − 1 Durfee squares, and then all the following ones the rectangles, the
sequence of non-empty Durfee squares/rectangles in λ is uniquely defined and is called the (vertical) (i− 1)-
Durfee dissection of λ.

Theorem 2: Andrews [5]
Let r ≥ 2 and 1 ≤ i ≤ r be two integers. Let Ar,i be the set of partitions such that in their vertical (i− 1)-
Durfee dissection, all vertical Durfee rectangles below A′r−1 are empty, and such that the last row of each
non-empty Durfee rectangle is actually a part of the partition. For all nonnegative integers n, denote by
Ar,i(n) the number of partitions of n which belong to Ar,i. Then we have

Ar,i(n) = Er,i(n).

The partition in Figure 1 is not in A5,3. The analytic form of these identities can be stated for all integers

r ≥ 2 and 1 ≤ i ≤ r as:∑
s1≥···≥sr−1≥0

qs
2
1+···+s2r−1+si+···+sr−1

(q)s1−s2 . . . (q)sr−2−sr−1(q)sr−1
=

(q2r+1, qi, q2r−i+1; q2r+1)∞
(q)∞

. (1)

New Durfee-type dissections
In [1], we define the bottom square (resp. bottom rectangle) of a partition λ = (λ1, . . . , λs) to be the square
of size λs× λs (resp. the horizontal rectangle of size λs× (λs− 1)) whose bottom coincides with the bottom
of the Young diagram of λ.

When we choose to draw first the i − 1 bottom squares and then all following ones the rectangles, the se-
quence of non-empty bottom squares/rectangles in λ is uniquely defined and we call it the (i − 1)-bottom
dissection of λ (see for instance the middle of Figure 1 where the bottom rectangles above B′4 are empty).

Let Br,i be the set of partitions such that in their (i− 1)-bottom dissection, all bottom rectangles above B′r−1
are empty. By definition of bottom squares/rectangles, for all 1 ≤ i ≤ r, we have Br,i = Cr,i and so:

Conjecture 2: Reformulation of Conjecture 1 (P.A., J. D., F. J. & H. M. [1])
Let r ≥ 2 and 1 ≤ i ≤ r be two integers. Then for all nonnegative integers n, we have Br,i(n) = Ar,i(n) =
Er,i(n).

Now define the horizontal Durfee rectangle of a partition λ to be the largest horizontal rectangle of size
k × (k − 1) fitting in the top-left corner of the Young diagram of λ.

When we choose to draw first k Durfee horizontal rectangles and then following all squares, the sequence of
non-empty Durfee squares/rectangles in λ is uniquely defined and is called the k-Durfee dissection of λ.

Define Dr,i to be the set of partitions such that in their (r − i)-Durfee dissection, all Durfee squares below
Dr−1 are empty. For example, the partition in Figure 1 belongs to D5,3 but not to D4,3. We showed that the
following holds.

Theorem 3: (P.A., J. D., F. J. & H. M. [1])
For r ≥ 2 and 1 ≤ i ≤ r two integers, we have Br,i = Dr,i.

Proof strategy for Conjecture 2
In [1], we computed the generating function for partitions in Dr,i = Br,i and we get (replacing 1− qd0 by 1)∑

d1≥···≥dr−1≥0

qd
2
1+···+d2r−1−d1−···−dr−i

(q)d1−d2 . . . (q)dr−2−dr−1(q)dr−1
(1− qdr−i). (2)

Our proof of Conjecture 2 actually consist in showing that the generating function (2) of Dr,i equals the

infinite product which is the generating function for Er,i. This is done by proving the following theorem:

Theorem 4: (P.A., J. D., F. J. & H. M. [1])
For all integers r > 0 and 0 ≤ i ≤ r − 1, we have:

∑
s1≥···≥sr−1≥0

qs
2
1+···+s2r−1−s1−···−si(1− qsi)

(q)s1−s2 . . . (q)sr−2−sr−1(q)sr−1
=

(q2r+1, qr−i, qr+i+1; q2r+1)∞
(q)∞

, (3)

where for i = 0, the term 1− qs0 on the left-hand side is simply taken to be 1.

Indeed, the right-hand side (resp. left-hand side) of (3) is the generating series for Er,r−i (resp. Dr,r−i)
obtained by taking r − i instead of i in the right-hand side of (1) (resp. in (2)).

This shows that Conjecture 2 (and therefore Conjecture 1) is an immediate consequence of Theorem 4 and
Theorem 3.

Proof of Theorem 4 via the Bailey lattice
Fix a formal indeterminate a. Recall [7] that a Bailey pair (αn, βn)n≥0 related to a is a pair of sequences
satisfying:

βn =

n∑
j=0

αj
(q)n−j(aq)n+j

∀n ∈ N. (4)

Theorem 5: Bailey lemma, special case
If (αn, βn) is a Bailey pair related to a, then so is (α′n, β

′
n), where

α′n = anqn
2
αn and β′n =

n∑
j=0

ajqj
2

(q)n−j
βj.

Theorem 6: Bailey lattice, special case
If (αn, βn) is a Bailey pair related to a, then (α′n, β

′
n) is a Bailey pair related to a/q, where α′0 = α0,

α′n = (1− a)anqn
2−n

(
αn

1− aq2n
− aq2n−2αn−1

1− aq2n−2

)
and β′n =

n∑
j=0

ajqj
2−j

(q)n−j
βj.

In [7], the following unit Bailey pair (related to a) is considered:

α
(0)
n =

(−1)nqn(n−1)/2(1− aq2n)(a)n
(1− a)(q)n

, β
(0)
n = δn,0, (5)

Iterating r ≥ 2 times Theorem 5 for the unit Bailey pair (5) yields a new Bailey pair (α(r)n , β
(r)
n ) with

α
(r)
n = arnqrn

2
α
(0)
n ,

and

β
(r)
n =

∑
n≥s1≥···≥sr≥0

as1+···+srqs
2
1+···+s2r

(q)n−s1(q)s1−s2 . . . (q)sr−1−sr
β
(0)
sr .

Applying the definition of a Bailey pair to (α
(r)
n , β

(r)
n ), letting n→∞ and taking a = 1 gives

∑
s1≥···≥sr−1≥0

qs
2
1+···+s2r−1

(q)s1−s2 . . . (q)sr−1
=

(q2r+1, qr, qr+1; q2r+1)∞
(q)∞

.

by taking q → q2r+1, z → qr in the Jacobi triple product identity [8, Appendix, (II.28)]∑
j∈Z

(−1)jzjqj(j−1)/2 = (q, z, q/z; q)∞. (6)

Therefore we get the i = 0 case of (3) (equivalently the i = r instance of (1)). In the same way, one gets the
i = r − 1 case of (3) (equivalently the i = 1 instance of (1)) by choosing a = q above.

For the other cases, we use Theorem 6 obtained in [4, Corollary 4.2] by iterating r− i times Theorem 5, then
using Theorem 6, and finally i− 1 times Theorem 5 with a replaced by a/q, and at the end letting n→∞.

Taking at last a = q as done in [4] gives (1), while for proving (3) we need to choose a = 1 and use a few
computation tricks.
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