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Standard cylindric tableaux (SCT)

An SCT of period (d ,L) = (3,4) with inner shape µ = [3,1,0] and outer
shape λ = [5,5,3]:
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Cylindric partitions were introduced by Gessel and Krattenthaler [2],
and semistandard cylindric tableaux have been studied by Postnikov [6]
in connection to Gromov–Witten invariants, and by Neyman [5] in
connection to RSK. The resulting cylindric Schur functions have been
further studied by McNamara [3].

Walks in simplicial regions

Consider walks in

∆d ,L = {(x1, x2, . . . , xd) ∈ Nd : x1 + x2 + · · · + xd = L}
with steps si = ei+1 − ei for 1 ≤ i ≤ n, with the convention ed+1 := e1.
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Theorem 1 (Mortimer–Prellberg [4])

The number of n-step walks in ∆3,L starting at (L,0, . . . ,0) equals
the number of certain Motkin paths of bounded height.

A complicated bijective proof is given in [1], along with the following.

Theorem 2 (Courtiel–Elvey Price–Marcovici [1])

For any x ∈ ∆d ,L, there is a bijection

{n-step walks starting at x} ←→ {n-step walks ending at x}

Totally asymmetric simple exclusion process (TASEP)

States of the TASEP on the cycle are binary words with d ones
(representing particles) and L zeros. Each particle can jump
counterclockwise if the adjacent site is empty. Let Ed ,L be the
underlying graph.
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Cylindric Robinson–Schensted insertion [5]
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Our bijections

Let α be a cylindric shape if period (d ,L), let x = (x1, x2, . . . , xd) ∈ ∆d ,L where xi = αi−1 − αi for 1 ≤ i ≤ d , and let u = 0x110x21 . . . 0xd1.
Let α′ be the conjugate of α, let y = (y1, y2, . . . , yd) ∈ ∆d ,L where yj = α′j−1 − αj for 1 ≤ j ≤ L, and let urc = 01xd01xd−1 . . . 01x1.
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SCT of period (d ,L) with
n cells and inner shape α
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∆3,3

n-step walks in ∆d ,L starting at x
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n-step walks in Ed ,L starting at u

d

L
1

1

2

2

3

3

4 5
6

6

7
8

8

α = [2,2,0]

T

s1

s2
s3

SCT of period (d ,L) with
n cells and outer shape α
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n-step walks in ∆d ,L ending at x
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n-step walks in Ed ,L ending at u
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SCT of period (L,d) with
n cells and inner shape α

conjugate new bijection
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n-step walks in ∆d ,L starting at x
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reverse-complement
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SCT of period (d ,L) with
n cells and inner shape α′
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