Walks In simplices, cylindric tableaux, and asymmetric exclusion processes
Sergi Elizalde

Standard cylindric tableaux (SCT)

An SCT of period (d, L) =
shape A = [5,5, 3]:

(3,4) with inner shape ¢ = [3, 1, 0] and outer
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Cylindric partitions were introduced by Gessel and Krattenthaler [2],
and semistandard cylindric tableaux have been studied by Postnikov [6]
iIn connection to Gromov—Witten invariants, and by Neyman [5] in
connection to RSK. The resulting cylindric Schur functions have been

further studied by McNamara [3].

Walks in simplicial regions

Consider walks in
Ad,L: {(X1,X2,...,Xd) - N - X1+ Xo+ -+ Xg = L}
with steps s; = .1 — ¢j for 1 </ < n, with the convention e, := e;.

Theorem 1 (Mortimer—Prellberg [4])

The number of n-step walks in As starting at (L, 0, ...
the number of certain Motkin paths of bounded height.
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A complicated bijective proof is given in [1], along with the following.

Theorem 2 (Courtiel-Elvey Price—Marcovici [1])

For any x € Ay, there is a bijection
{n-step walks starting at x} «+— {n-step walks ending at x}

Totally asymmetric simple exclusion process (TASEP)

States of the TASEP on the cycle are binary words with d ones
(representing particles) and L zeros. Each particle can jump
counterclockwise if the adjacent site is empty. Let &4, be the

underlying graph.
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Cvlindric Robinson-Schensted insertion [5
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Our bijections

Let a be a cylindric shape if period (d, L), let x = (xq, X2, . ..
Let o be the conjugate of a, lety = (y1, Yo, ..., Ya) € Ag Where y; =
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, Xq) € Ay Where x; =« 1 —a;for1 < i< d,andlet u=0%10%1...0%1.

a; ¢ —ajfor1 <j<L andlet u™ =01"%01%"...01%.

n-step walks in &5 | starting at u
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n-step walks in &4, ending at u

e
. G

01QP11 10400 &33
y@@ :

7 #10100

@111000

8N\ = 011001/

. 101010

> —*@10 00

@100’301 @

References

s [1] J. Courtiel, A. Elvey Price and |. Marcovici, Bijections
between walks inside a triangular domain and Motzkin
paths of bounded amplitude, Electron. J. Combin. 28, #2.6
(2021).

s [2] |. M Gessel and C. Krattenthaler, Cylindric partitions,
Irans. Amer. Math. Soc. 349, 429-479 (1997).

s [3] P. McNamara, Cylindric skew Schur functions, Adv.
Math. 205, 275-312 (2006).

a [4] P. Mortimer and T. Prellberg, On the number of walks in
a triangular domain, Electron. J. Combin. 22, #1.64
(2015).

a [5] E. Neyman, Cylindric Young Tableaux and their
Properties, arXiv:1410.5039 [math].

s [6] A. Postnikov, Affine approach to quantum Schubert
calculus, Duke Math. J., 128, 473-509 (2005).

Department of Mathematics, Dartmouth College, 6188 Kemeny Hall, Hanover, NH 03784, USA

E-mail: sergi.elizalde@Rdartmouth.edu

http://www.math.dartmouth.edu/~sergi


https://dartgo.org/fpsac

