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1 Generalizing Conway-Coxeter friezes

Frieze patterns ([2, 3]) are arrangemnts of numbrers such that the diamond
rule ab− cd = 1 holds for each diamond.

The numbers coincide with possible evaluations from a cluster algebra A(Q)
of type A to the positive integers! We use a more general definition of (pos-
itive) frieze inspired in the theory of cluster algebras.

Definitions

A cluster algebra A(Q) is a subalgebra of an ambient field Q(x1, . . . , xn) gen-
erated by combinatorially defined elements called cluster variables x, which
are grouped into overlapping sets called clusters X of constant cardinality.
Different clusters are obtained from each other by sequences of mutations,
starting from a pair (X,Q) called initial seed.

1.A frieze associated to A(Q) is a ring homomorphism λ : A(Q) → Z.
2.A frieze λ is positive if for any cluster variable x ∈ A(Q), its image λ(x)

is in Z+.
3.A positive frieze λ is unitary if there exists a cluster X in A(Q) such that

every cluster variable xi ∈ X is mapped to 1 by λ.
The Theorem by Conway-Coxeter relating friezes and triangulations of the
polygon implies that:

Theorem: [3] All (positive) friezes from cluster algebras of type A are
unitary.

2 Known results on positive friezes

Now that we have a generalized notion of frieze and a property that holds for
friezes of type A, it is natural to ask if other cluster algebra types will have
the same properties.

Finite mutation (simply laced) cluster types:

1.Baur-Marsh [1] (and Thomas) (2008) study positive friezes in type D. In
particular, there are non-unitary examples.

2.Fontaine-Plamondon [5] (2014) count non-unitary friezes in type E6

3.Gunawan-Schiffler [6] (2020) prove that in type Ã (unpunctured annulus)
all friezes are unitary.

4.Gunawan-Schiffler [6] (2020) examples of non-unitary friezes in types D̃, Ẽ
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From the information above it is natural to ask: Are there other unpunctured
surface types such that all friezes are unitary?
Cluster algebras arising form surfaces are very related to hyperbolic geom-
etry and Teichmüller theory. ([4, 7])

λ-lengths of arcs ⇐⇒ cluster variables
triangulations ⇐⇒ clusters

Ptolemy relations ⇐⇒ algebraic relations in A(Q)

Theorem: All (positive) friezes defined from the cluster algebra arising
from the pair of pants are unitary.

Strategy of the proof:
All arcs have λ-length in Z+ and all boundary segment have λ-length 1. We
assume there is no triangulation with all λ-lengths 1.
1)We can reduce peripheral arcs with length 1.
2)Take the bridging arc γ with minimal λ-length k (we can suppose k > 1,

if it is not the case we can find a triangulation with all lengths 1). Use γ
to cut the surface. It becomes an annulus where some boundary segments
have length k.

3)Define a triangulation by bridging arcs for this special annulus. Start by
selecting an arc α0 with minimal length a0 and continue recursively, until
you have a triangulation.

4)The triangulation constructed for the annulus will have a sequence of arcs
α0, α1, . . . , αt with an associated sequence of lengths

a0 ≤ a1 ≤ · · · ≤ at

but we know, by simple arithmetic, that this sequence has to have a strict
inequality! This will produce an absurd. This starts from assuming k > 1,
so k = 1 and we can find a triangulation with all lengths equal to 1.
Remark: This proof cannot be directly extrapolated to other unpunctured

surfaces.
But this theorem rises the question:

are all friezes from unpunctured surfaces unitary?
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