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Abstract

We give an exposition of recent developments in the
study of Newell-Littlewood numbers. These are the
tensor product multiplicities of Weyl modules in the
stable range. They are also the structure coefficients
of the Koike-Terada basis of the ring of symmetric
functions. Two types of combinatorial results are
exhibited, those obtained combinatorially starting
from the definition of the numbers, and those that
also employ geometric and/or representation theo-
retic methods.

Introduction

The Newell-Littlewood numbers are defined by
Nµ,ν,λ =

∑
α,β,γ

cµ
α,βcν

α,γcλ
β,γ,

where the indices are in Parn, partitions of at most n
parts, and cµ

α,β is the Littlewood-Richardson coeffi-
cient.
Let W be a complex vector space with a nondegenerate
symplectic or orthogonal form ω. Let G be the sub-
group of SL(W ) preserving ω. Then G = SO2n+1, Sp2n

or SO2n. These are groups in the Bn, Cn, Dn series of
the Cartan-Killing classification, respectively.
If λ ∈ Parn, H. Weyl’s construction gives a G-module
S[λ](W ). These modules are irreducible, except in type
Dn, where irreducibility holds if λn = 0.

Nµ,ν,λ as tensor product multiplicities

In the stable range ℓ(µ) + ℓ(ν) ≤ n,
S[µ](W ) ⊗ S[ν](W ) ∼=

⊕
λ∈Parn

S[λ](W )⊕Nµ,ν,λ.

In particular, Nµ,ν,λ is independent of G.
The Schur functions sλ form a basis of the ring Λ of
symmetric functions. It is the “universal character”
of Sλ(V ) for GL. In a similar fashion, Koike-Terada
establish universal characters of S[λ](W ) for Sp.

Nµ,ν,λ from symmetric functions

This Koike-Terada basis {s[λ]} of Λ satisfies
s[µ]s[ν] =

∑
λ

Nµ,ν,λs[λ].

Tableaux combinatorics and shape
of s[µ]s[ν]

Let µ∆ν = (µ\ν)∪(ν\µ) be the symmetric difference
of the Young diagrams of λ and µ. Define Par to be
the set of all integer partitions.

Shape of s[µ]s[ν]

Fix µ, ν ∈ Par.
• Let k ∈ Z≥0. There exists λ ∈ Par with |λ| = k

and Nµ,ν,λ > 0 if and only if
k ≡ |µ∆ν| (mod 2) and |µ∆ν| ≤ k ≤ |µ| + |ν|.

• If Nµ,ν,λ > 0 with |λ| > |µ∆ν|, there exists λ↓↓

such that Nµ,ν,λ↓↓ > 0, λ↓↓ ⊂ λ and
|λ↓↓| = |λ| − 2.

• If Nµ,ν,λ > 0 with |λ| < |µ| + |ν|, there exists λ↑↑

such that Nµ,ν,λ↑↑ > 0, λ ⊂ λ↑↑ and
|λ↑↑| = |λ| + 2.

This theorem is proved in [1] using Young tableau
combinatorics based on a demotion procedure. In [2]
it is further studied in connection to the Robinson-
Schensted-Knuth correspondence.

Newell-Littlewood polytope

Fix λ, µ, ν ∈ Parn.

Nµ,ν,λ as lattice points

There is a polytope Pµ,ν,λ ⊂ R3n2 such that
Nµ,ν,λ = #(Pµ,ν,λ ∩ Z3n2).

Define the Newell-Littlewood function to be Nµ,ν,λ :
Z≥1 → N by k 7→ Nkµ,kν,kλ.

Non-polynomiality

There exist λ, µ, ν such that Nµ,ν,λ(k) is not a poly-
nomial in k.

A special case of Nµ,ν,λ is the Littlewood-Richardson
polynomial cλ

µ,ν. That is, when |ν| = |λ| + |µ|,
Nµ,ν,λ = cλ

µ,ν is in fact a polynomial.

Geometric aspects of Nµ,ν,λ

We now turn to the results of [2], whose proofs rely on
a mix of geometry and combinatorics. Fix n ∈ N. Let
NL-semigroup(n) = {(λ, µ, ν) ∈ (Parn)3 : Nλ,µ,ν >
0}. Indeed, NL-semigroup is a finitely generated semi-
group. An approximation of it is the saturated cone:
NL-sat(n) = {(λ, µ, ν) ∈ (ParQn )3 : ∃t > 0 Ntλ,tµ,tν ̸= 0}
In [3], three of the authors conjectured a description of
NL-semigroup(n) using extended Horn inequalities.

Conjectural description of
NL-semigroup(n)

(λ, µ, ν) ∈ NL-semigroup(n) if and only if |λ| +
|µ| + |ν| is even and (λ, µ, ν) satisfy the extended
Horn inequalities.

In [2], we proved saturated version of the conjecture:

A recursive description of NL-sat(n)

(λ, µ, ν) ∈ NL-sat(n) if and only if they satisfy
extended Horn inequalities.

Similar to the Horn inequalities, the recursive nature
of the extended Horn inequalities comes from indexing
sets satisfying Horn inequalities for smaller n. As a
result, we obtain a description of NL-sat(n) that only
involves inequalities rather than tensor product multi-
plicities. In fact, this is a generalization of Klyachko’s
result on the description of LR-sat(n).
The extended Horn inequalities, like the Horn in-
equalities, are not minimal. The work of Knutson-
Tao-Woodward gives a set of minimal inequalities
that defines LR-sat(n). Our next result is an NL-
generalization:

Minimal inequalities

We gave a minimal set of inequalities that defines
NL-sat(n).

The proof use ideas of Belkale-Kumar on their de- for-
mation of the cup product on flag manifolds, as well
as the third author’s work on GIT-semigroups/cones.

Connection to matrix eigenvalues

Famously, Klyachko gives a relation between
LR-sat(n) and the Hermitian eigencone. Here
we relate NL-sat(n) with the Symplectic eigen-
cone. For a complex Hermitian matrix M , let
λ(M) ∈ {(λ1 ≥ λ2 ≥ . . . ≥ λn) : λi ∈ R} be its
eigenvalues in weakly decreasing order. For λ ∈ Parn,
let λ̂ := (λ1, . . . , λn, −λn, . . . , −λ1).

Eigencone interpretation

(λ, µ, ν) ∈ NL-sat(n) if and only if there exists

M1, M2, M3 ∈

 A B

B̄T −AT

 : ĀT = A, BT = B


such that M1 + M2 = M3 and (λ̂, µ̂, ν̂) =
(λ(M1), λ(M2), λ(M3)).
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