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Automating counting
A goal in analytic combinatorics is to find asymptotics for arrays of numbers.
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Big Question: Given a combinatorial description of an array, can we auto-
mate finding its asymptotics?

Example: Dyck paths
A Dyck path of size n starts at (0,0), ends at (2n,0), and takes steps {↗, ↘}
such that it never goes below the x-axis. Dyck paths can be uniquely decom-
posed according to their first return to the x-axis:

Dyck path = 2 legs + arbitrary Dyck path
          + arbitrary Dyck path

(0, 0) (2n, 0)

Symbolic method → D(z) = 1 + z · D(z) · D(z) = 1 −
√
1 − 4z

2z

We could use Taylor series to derive a formula for the Catalan numbers, or for
asymptotics, note that the singularity with smallest modulus is at z = 1/4.

Context

Flajolet and Sedgewick’s book, [3]: univariate generating functions.

Pemantle and Wilson’s book, [5]: multivariate rational generating

functions F(x) =
∑

n1,...,nd
ai1,...,id

x
n1
1

· · ·xnd
d
. Here, x = (x1, . . . ,xd).

Analytic combinatorics mantra:
Location of a GF’s singularities determines exponential growth of its coefficients.
Behavior of the GF near its singularities determines subexponential growth.

The Cauchy integral formula is central to these derivations:[
x
n1
1

· · ·xnd
d

]
F(x) =

(
1

2πi

)d ∫
T

F(x)

x
n1+1
1

· · ·xnd+1
d

dx1 · · ·dxd

Hierarchy of GFs

rational

algebraic

rational
diagonal

D-finite

Rational GFs encode the output of deterministic finite automata.

Algebraic GFs encode outputs of the more expressive context-free
grammars. Examples include Dyck paths, binary trees, constrained
(random) walks, and RNA secondary structures.

Definition. The elementary diagonal of a GF F(x) is the (d − 1)-variate GF
encoding the coefficients from F where x1 and x2 have matching powers.

Embedding with Safonov
The following from [6] is a generalization of a result from Furstenberg, [4].
Suppose that f is an algebraic power series given as a branch of P(f (x), x) =
0, that f is divisible by x1, and that in some neighborhood of 0, there is a

factorization P(Y, x) = (Y − f (x))ku(Y, x) where u(0,0) 6= 0 and k ≥ 1 is an
integer. Then f is the elementary diagonal of the rational function F given
by

F(Y, x) =
Y2PY(Y,Yx1,x2, . . . ,xd)

kP(Y,Yx1,x2, . . . ,xd)
.

Example: Dissections

Drmota [1, p.376] enumerates dissec-
tions of polygons using a bivariate GF
A(x,y), where x counts the number of
vertices in the polygon, and y counts
the total number of edges in the dis-
section. A satisfies:

A(x,y) = xy2(1 + A)2 + xy(1 + A) · A.

Since A is divisible by x, we embed into

F(Y,x,y) =

(
1 −

(
2Y2xy2 + 2Y2xy + 2Yxy2 + Yxy

))
Y

1 −
(
Y2xy2 + Y2xy + 2Yxy2 + Yxy + xy2

) .

We note that [xpny(1−p)n]A(x,y) = [Ypnxpny(1−p)n]F(Y,x,y), and find that there
is a single smooth critical point in this direction. Thus for 1/3 < p < 1/2:[
xpny(1−p)n

]
A(x,y) =

√
1 − p

2πp2
√
3p − 1

· 1
n2

·

(
(1 − p)1−p

(1 − 2p)2−4p(3p − 1)3p−1

)n
+O

(
1

n3

)
.

Preprocessing methods
Preprocessing may lead to Safonov’s conditions or nicer embeddings.

If F(0) 6= 0, subtract off constant or polynomial.

If F not divisible by a variable, sub x → xy.

Sometimes, a substitution F → F/x simplifies embeddings.

Example: Bicolored Motzkin paths

In [2, Lemma 2.1], Elizalde derives the GF for bicolored Motzkin paths with
steps {↗, ↘, →, →}. Let am,n be the number of such paths with m total ↗ or
→ steps and n total ↘ or → steps. Then

M(x,y) :=
∞∑

m,n=0

am,nx
myn =

1 − x − y −
√
(1 − x − y)2 − 4xy

2xy
.

Using Safonov on M(x,xy) − 1 gives the asymptotic formula[
xpny(1−p)n

]
M(x,y) =

1

2π(1 − p)2p2
· 1

n2
·

(
(1 − p)2p−2

p2p

)n
+O

(
1

n3

)
.

Future work

How does Denef-Lipshitz, another embedding strategy, compare?

Can we find embeddings for GFs satisfying quadratics/cubics/quartics?

Can we systematize generating “nice” embeddings?
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