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Introduction
We consider a sequence of four variable polynomials by refining Stieltjes’ continued fraction for Eulerian polynomials. Using the combinatorial theory of Jacobi-type continued
fractions and bijections we derive various combinatorial interpretations in terms of permutation statistics for these polynomials, which include special kinds of descents and excedances
in a recent paper of Baril and Kirgizov. As a by-product, we derive several equidistribution results for permutation statistics, which enables us to confirm and strengthen a recent
conjecture of Vajnovszki and also to obtain several companion permutation statistics for two bistatistics in a conjecture of Baril and Kirgizov.

Definition 1. Eulerian polynomialsAn(t) :=
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k≥0An,kt
k

by ∑
n≥0

An(t)
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ezt − tez
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Definition 2. Let Sn is the set of permutations on {1, . . . , n}.

desσ = #{i ∈ [n− 1]|σ(i) > σ(i + 1)},
excσ = #{i ∈ [n]|σ(i) > i},

Proposition 1 (Riordan1958, MacMahon1913).

An(t) =
∑
σ∈Sn

tdesσ =
∑
σ∈Sn

texcσ

For a permutation σ := σ(1)σ(2) · · ·σ(n) of 1 . . . n, an
index i ∈ [1, n− 1] is called a

• descent (resp. excedance) if σ(i) > σ(i + 1) (resp.
σ(i) > i);

• descent of type 2 if i is a descent and σ(j) < σ(i) for
j < i;

• pure excedance if i is an excedance and σ(j) /∈ [i, σ(i)]
for j < i;

and an index i ∈ [2, n] is called a

• drop if i > σ(i);

• pure drop if i is a drop and σ(j) /∈ [σ(i), i] for j > i.

Let desσ (resp. excσ, dropσ, des2 σ, pexσ and pdropσ)
denote the number of descents (resp. excedances, drops,
descents of type 2, pure excedances and pure drops) of
σ.

Mesh patterns where first introduced by Brändén and
Claesson (2011), as a further extension of bivincular
patterns.

Mesh patterns where first introduced by Brändén and
Claesson (2011), as a further extension of bivincular
patterns. A pair (τ, R), where τ is a permutation in
Sk and R is a subset of J0, kK × J0, kK, where J0, kK
denotes the interval of the integers from 0 to k, is a
mesh pattern of length k.

Let (i, j) denote the box whose corners have coordi-
nates (i, j), (i, j + 1), (i + 1, j + 1) and (i + 1, j). An
example of a mesh pattern is the classical pattern 312
along with R = {(1, 2), (2, 1)}. We draw this by shad-
ing the boxes in R

.

des2 = pex =

pdrop = ear =

Figure 1: Illustration of the mesh patterns des2 and pex and ear,
where the cross line means that the value cannot be in the segment
of the horizontal line

Recently Baril and Kirgizov proved the equidistribution of the statistics "des2", "pex" and "pcyc" over Sn by bijections and conclude their paper with the following two conjectures
on the equidistribution of two pairs of bistatistics.

Conjecture 1 (Baril and Kirgizov). The two bistatistics (des2, cyc) and (pex, cyc) are equidistributed on Sn.

Conjecture 2 (Vajnovszki). The two bistatistics (des2, des) and (pex, exc) are equidistributed on Sn.

Refined Eulerian polynomials by continued fractions
In this paper we shall take a different approach to their problems through the combina-
torial theory of J-continued fractions developed by Flajolet and Viennot in the 1980’s.
Recall that a J-type continued fraction is a formal power series defined by

∞∑
n=0

anz
n =

1

1− γ0z −
β1z

2

1− γ1z −
β2z

2

· · ·

,

where (γn)n≥0 and (βn)n≥1 are two sequences in some commutative ring.

Define the polynomials An(t, λ, y, w) by the J-fraction∑
n≥0

znAn(t, λ, y, w) =
1

1− wz −
tλy z2

1− (w + t + 1)z −
t(λ + 1)(y + 1) z2

· · ·

(2)

with γn = w + n(t + 1) and βn = t(λ + n− 1)(y + n− 1).

For σ ∈ Sn, an index i ∈ [n] is called a

• cycle peak (cpeak) if σ−1(i) < i > σ(i);

• cycle valley/ (cval) if σ−1(i) > i < σ(i);

• cycle double rise (cdrise) if σ−1(i) < i < σ(i);

• cycle double fall (cdfall) if σ−1(i) > i > σ(i);

• fixed point (fix) if σ−1(i) = i = σ(i).

Clearly every index i belongs to exactly one of these five types; we refer to this classifica-
tion as the cycle classification. Next, an index i ∈ [n] (or a value σ(i)) is called a

• record (rec) (or left-to-right maximum) if σ(j) < σ(i) for all j < i (the index 1 is always
a record];

• antirecord (arec) (or right-to-left minimum) if σ(j) > σ(i) for all j > i (the index n is
always an antirecord);

• exclusive record (erec) if it is a record and not also an antirecord;

• exclusive antirecord (earec) if it is an antirecord and not also a record.

• exclusive antirecord cycle peak (ear) if i is an exclusive antirecord and also a cycle peak.

Main results
Theorem 2. We have

An(t, λ, y, w) =
∑
σ∈Sn

texc σλpex σyear σwfix σ

=
∑
σ∈Sn

texc σλpcyc σyear σwfix σ

=
∑
σ∈Sn

texc σλpcyc σypex σwfix σ.

By (2), the polynomial An(t, λ, y, w) is invariant under
λ ↔ y. Hence, the above theorem implies immedi-
ately the following result.

Corollary 3. The six bistatistics (pex, ear), (ear, pex),
(ear, pcyc), (pcyc, ear), (pex, pcyc) and (pcyc, pex) are
equidistributed on Sn.

Now we consider three specializations ofAn(t, λ, y, w).
First let Bn(t, λ, w) = An(t, λ, 1, w) = An(t, 1, λ, w),
namely,

∑
n≥0

znBn(t, λ, w) =
1

1− wz −
tλ z2

1− (w + t + 1)z −
2t(λ + 1) z2

· · ·
(4)

with γn = w + n(t + 1) and βn = nt(λ + n− 1).

To deal with descent statistics, we recall some linear
statistics. For σ = σ(1)σ(2) · · ·σ(n) ∈ Sn with con-
vention 0–∞, i.e., σ(0) = 0 and σ(n + 1) = n + 1, a
value σ(i) (1 ≤ i ≤ n) is called a

• double ascent (dasc) if σ(i − 1) < σ(i) and σ(i) <
σ(i + 1);

• double descent (ddes) if σ(i− 1) > σ(i) and σ(i) >
σ(i + 1);

• peak (peak) if σ(i− 1) < σ(i) and σ(i) > σ(i + 1);

• valley (valley) if σ(i−1) > σ(i) and σ(i) < σ(i+1).

A double ascent σ(i) (1 ≤ i ≤ n) is called a foremaxi-
mum of σ if it is at the same time a record. Denote the
number of foremaxima of σ by fmax σ. For example,
if σ = 3 4 2 1 5 8 7 6, then dascσ = ddesσ = peak σ =
valσ = 2 and fmax σ = 2 as the foremaxima of σ are
3, 5.

Theorem 4. We have

Bn(t, λ, w) =
∑
σ∈Sn

texc σλpcyc σwfix σ (5a)

=
∑
σ∈Sn

texc σλear σwfix σ (5b)

=
∑
σ∈Sn

texc σλpex σwfix σ (5c)

=
∑
σ∈Sn

tdes σλdes2 σwfmax σ (5d)

and ∑
n≥0

Bn(t, λ, w)
zn

n!
= ewz
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1− t
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)λ
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