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The transition matrix A = (aMM ′)

A (perfect) matching on [2n] is a set partition of [2n] such that each block has size 2. Let Mat2n (NC2n and NN2n, respectively)
stand for the set of (noncrossing and nonnesting, respectively) matchings on [2n].

There are two bases of irreducible S2n-representation of shape (n, n):

• the Specht basis {vM ∈ S(n,n) : M ∈ NN2n} and

• the web basis {∆M ∈ Wn : M ∈ NC2n}.
There is a unique (up to scalar) isomorphism ϕ : Wn → S(n,n) and let wM ′ := ϕ(∆M ′) for each M ′ ∈ NC2n. The transition matrix
A = (aMM ′) is defined by

vM =
∑

M ′∈NC2n

aMM ′wM ′

for all M ∈ NN2n.

Theorem (H. Russell and J. Tymoczko, 2019). The transition matrix A is unitriangular with respect to an appropriate order on the
bases.

Theorem (B. Rhoades, 2019). The entries aMM ′ of A are nonnegative integers. In fact, aMM ′ is the appearances of M ′ by
resolving all crossings in M into the rule:

= + (1)

Problem. Find an explicit combinatorial interpretation of aMM ′.

Grid configurations

We define grid configurations which represent matchings in a ‘rigid’ set-
ting.
Let σ ∈ Sn. Define a grid configuration G(σ,E) as follows:

1. Mark the cell (i, σ(i)) and draw a horizontal line to the left and a
vertical line to the top from the marked cell.

2. Define Cr(σ) to be the set of crossings and let E ⊆ Cr(σ).

3. Replace each crossings in E with the ‘elbow’ cell as shown below:

Define M(σ,E) to be the matching associated to G(σ,E). For instance,
if σ = 1324 and E = {(1, 3), (1, 4)}, then we get the following:

We can write the relation (1) in terms of grid configurations as

G(σ,E) = G(σ,E ∪ {c}) + G(σ · (i, σ−1(j)), E), (2)

where c = (i, j) is the northwest-most crossing in G(σ,E). Equivalently,

Web permutations

From the grid configuration G(id, ∅), we obtain two grid config-
urations by resolving a northwest-most crossing into the rule 2.
By resolving crossings until there is no crossing left, we get grid
configurations of the form G(σ,Cr(σ)). For each remaining grid
configuration G(σ,Cr(σ)), the permutation σ is called a web
permutation of [n] and we denote the set of web permuta-
tions of [n] by Webn. In other words, we have

G(id, ∅) =
∑

σ∈Webn

G(σ,Cr(σ)). (3)

For example, starting from the grid configuration G(id, ∅) for
n = 3, we have

Therefore, Web3 = {123, 213, 132, 231, 321}. The following
proposition justifies that web permutations are well-defined.

Proposition 1. The expansion in (3) is unique. In other
words, the grid configurations appearing in (3) does not
depend on the order of resolving procedure (choice of
maximal crossings). In addition, the permutations σ in (3)
are all distinct.

Main result

1. A map D

For a matching M , record N for openers and E for closers
reading M from left to right. This gives the Dyck path
D(M) in the n by n grid.

To a permutation σ, we associate the minimum Dyck path
D(σ) where every cell (i, σ(i)) lies below the path.

2. A map M

We write M(σ) = M(σ,Cr(σ)).

Theorem 2. For matchings M ∈ NN2n and M ′ ∈ NC2n, the
entry aMM ′ is equal to the number of web permutations
σ ∈ Sn such that D(σ) ⊆ D(M) and M(σ) = M ′.

Characterization

Definition. For a permutation w = w1w2 · · ·wn with n ≥ 2, let wk be
the smallest letter in w. Then w is an André permutation if both
w1 · · ·wk−1 and wk+1 · · ·wn are André permutations and
max{w1, . . . , wk−1} < max{wk+1, . . . , wn}.
Example. A word 547239 is an André permutation.

Definition 3. Let C = (a1, . . . , ak) be a cycle with
a1 = min{a1, . . . , ak}. We say that C is an André cycle if the
permutation a2 · · · ak is an André permutation.

Example. A cycle C = (2, 3, 9, 1, 5, 4, 7) is an André cycle since
C = (1, 5, 4, 7, 2, 3, 9) and the permutation 547239 is an André
permutation.

Theorem 4 (Characterization I). A permutation σ ∈ Sn is a web
permutation if and only if each cycle of σ is an André cycle.

Corollary 5. A 312-avoiding permutation is a web permutation.

Corollary 6 (RT19, IZ21). Let M ∈ NN2n and M ′ ∈ NC2n. Then
aMM ′ > 0 if and only if D(M ′) ⊆ D(M). In particular, the transition
matrix (aMM ′) is upper-triangular. Moreover, there are ones along
the diagonal of the transition matrix, and 312-avoiding permutations
contribute to the ones.

Enumerative properties

Definition. For σ ∈ Sn, the canonical cycle notation of σ is
a cycle notation of σ such that its cycles are sorted based on the
smallest elements of the cycles and the smallest element of each
cycle is written in the last place of the cycle.

Definition (Foata transformation ̂ : Sn→ Sn). For
σ ∈ Sn, we define σ̂ to be the permutation obtained by dropping
the parentheses in the canonical cycle notation of σ.

Definition 7 (A map φ : Sn→ Sn+2). For a permutation
σ ∈ Sn, define the one-cycle permutation φ(σ) ∈ Sn+2 by

φ(σ) := (1, σ̂1 + 1, . . . , σ̂n + 1, n + 2).

Theorem 8 (Characterization II). For n ≥ 1, let
ACn+2 ⊂ Sn+2 be the set of André cycles consisting of [n + 2].
Then we have φ(Webn) = ACn+2. In particular, the number of
web permutations of [n] is equal to the number of André cycles
consisting of [n + 2].

The Euler numbers En are defined via the exponential gener-
ating function

E(z) :=
∑
n≥0

En
xn

n!
= sec z + tan z.

The Euler number En counts André permutations of [n].

Corollary 9. The Euler number En+1 enumerates the
number of web permutations of [n].

There are numbers that refine Euler numbers, called Entringer
numbers, in the following sense: For n ≥ 1,

n∑
k=1

En,k = En+1.

We have a counterpart of this refinement.

Corollary 10. The Entringer number En,k enumerates the
number of web permutations σ of [n] with σ1 = n + 1− k.
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Seidel matrix sequence. Sém. Lothar. Combin., 73:Art. B73e, 54,
[2014-2016].

[IZ21] M. S. Im and J. Zhu. Transitioning Between Tableaux and Spi-
der Bases for Specht Modules. Algebras and Representation Theory,
2021.

[Rho19] B. Rhoades. The polytabloid basis expands positively into the
web basis. Forum Math. Sigma, 7:Paper No. e26, 8, 2019.

[RT19] H. M. Russell and J. S. Tymoczko. The transition matrix be-
tween the Specht and web bases is unipotent with additional vanishing
entries. Int. Math. Res. Not. IMRN, (5):1479–1502, 2019.

[Sta10] R. P. Stanley. A survey of alternating permutations. In Com-
binatorics and graphs, volume 531 of Contemp. Math., pages 165–
196. Amer. Math. Soc., Providence, RI, 2010.

[Sta12] R. P. Stanley. Enumerative combinatorics. Volume 1, vol-
ume 49 of Cambridge Studies in Advanced Mathematics. Cambridge
University Press, Cambridge, second edition, 2012.


