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Cluster Algebras & LP Algebras

Cluster algebras are a type of commutative ring whose generators x1, . . . , xn appear in clusters
{x1, . . . , xk} of fixed size. Given a cluster C, the mutation operation µi uniquely exchanges xi ∈
C = {x1, . . . , xk} for some x′

i ∈ C′ = {x1, . . . , x′
i, . . . , xk} via a binomial exchange relation.

Two important structural properties of cluster algebras are:

The Laurent Phenomenon: Every cluster variable can be written as a Laurent polynomial in
terms of any cluster.
Positivity: The coefficients of this Laurent polynomial are strictly non‐negative.

Laurent Phenomenon (LP) algebras are a generalization of cluster algebras defined by Lam and
Pylyavskyy [2] where the binomial exchange relations are replaced by irreducible Laurent polyno‐
mials. By design, these algebras exhibit the Laurent Phenomenon. In general, positivity remains
conjectural.

Graph LP Algebras

Graph LP Algebras are a subclass of LP Algebras whose generators and relations have nice combi‐
natorial encodings in terms of graphs.

Theorem (Lam‐Pylyavskyy, 2016 [3]):

Let Γ be an undirected graph on [n]. Define N = [nij] as

nij =


1

Xi

(
Ai +

∑
i adjacent to j Xj

)
if i = j,

−1 if i is adjacent to j,

0 otherwise.

The graph LP algebra AΓ has cluster variables {X1, . . . , Xn} ∪ {YS : S ⊂ [n] is connected}, where
YS = |NS|. Its clusters have the form {Xi1, . . . , Xik} ∪ {YS}S∈S where S is a maximally nested
collection of subsets of [n]\{i1, . . . , ik}.

AΓ has cluster variables X1, X2, X3, X4, X5, Y1, Y2, Y3,
Y4, Y5, Y12, Y25, Y23, Y34, Y125, Y235, Y123, Y234, and Y12345.

Examples of clusters include: {X3, Y4, Y125, Y25, Y5},
{X1, X2, X3, X4, X5}, and {Y4, Y2, Y12, Y125, Y12345}.

Figure 1. An example of a graph, Γ, and several clusters in the corresponding algebra AΓ.

Rooted Clusters

Definition:

Let Γ be a tree on [n] and choose a vertex, v, to be its root. For each vertex x in Γ, let Ix :=
{x} ∪ {descendants of x}. The rooted cluster associated to v is Cv := {Ix}x∈[n].

For Γ from Figure 1, an example of a rooted cluster is C3 = {Y1, Y4, Y5, Y125, Y12345}.

Explicit Formulas

We study the case where Γ is a tree with vertex set [n] and C is a rooted cluster on Γ.

Theorem (BCKZ, 2021):

For any i ∈ V (Γ), Xi can be expressed as a Laurent polynomial with non‐negative coefficients
in the elements of C. Similarly, for any S ⊂ V (Γ), YS can be expressed as a Laurent polynomial
with non‐negative coefficients in the elements of C. Explicitly,

Xi =

∑
u∈Γv

≥i

(∏
w∈Γv

≥i\Γv
≥u

YΓv
<w

)(∏
w∈Γv

<u
YIw

)(∑
w∈Iu

YΓv
<u\Γv

≥w
Aw

)
∏

u∈Γv
≥i

YIu

YS =
∑

O⊆S containing all
minimal elements of Γ in S

∑
u:S\O→V (Γ)
u(x)∈Γv

⋖x\O

(∏
x∈O YIx

) (∏
x∈S\O YΓv

<x\{u(x)}
)

∏
x∈S YΓv

<x

Hyper T -path Construction

We extend Schiffler’s T ‐path construction for Type An cluster algebras [4]. We construct an
auxiliary graph ΓC by adding a vertex i′ adjacent to each leaf i of Γ and then, for each S ∈ C,
adding a hyperedge labeled YS that connects the neighbors of S in the extended graph.

Figure 2. The auxiliary graph C3 for Γ from Figure 1.

Hyper T -path Expansion Formula

Theorem (BCKZ, 2021):

Let Γ be a tree and C a rooted cluster on Γ. If S is a connected subset of vertices of Γ, then
YS =

∑
complete hyper
T ‐paths α for S

wt(α)

where

wt(α) =

 ∏
odd connections c

wt(c)

 ∏
even connections c

wt(c)

−1

Hyper T -path Rules

Let S be a connected subset of Γ. A complete hyper T ‐path for S with respect to C is a set of
nodes, labelled by vertices of ΓC , joined by connections labelled by hyperedges of ΓC such that
the diagram is connected and the following hold.

1. If a connection is labelled by hyperedge e, it joins nodes labelled by all the endpoints of e with multiplicity 1.
2. There are a distinguished set of boundary nodes labelled by elements of S ′ with multiplicity 1. Other nodes are

called internal nodes.
3. Connections are specified to be even or odd.
4. Boundary nodes are adjacent only to odd connections.
5. Internal nodes labelled by elements of S are adjacent to exactly one even and at least one odd connection.
6. Internal nodes labelled by elements not in S are adjacent to exactly one even and exactly one odd connection.
7. If x, y are below elements of S, any path in any complete hyper T ‐path from boundary node x to boundary node

y uses even connections labelled, in order, by Ix, Iap, Iap−1, . . . , Ia1, Ib1, Ib2, . . . , Ibq, Iy where the shortest path from
x to y in Γ′ is x, ap, ap−1, . . . , a1, x ∨ y, b1, b2, . . . , bq, y for p, q ≥ 0.

8. If x is below an element of S and y above the maximal element of S, any path in any complete hyper T ‐path
from the boundary node x to the boundary node y uses even connections labelled, in order, by Ix, Iap, . . . , Ia2,
where the shortest path from x to y in Γ′ is x, ap, ap−1, . . . , a1, y, p ≥ 1. If p = 1, then a path from x to y uses the
even connection Ix.

9. If x, y are boundary nodes, where the shortest path from x to y in Γ′ is x, ap, . . . , a1, x ∨ y, b1, . . . , bq, y , then any
path in any complete hyper T ‐path from x to y uses nodes labelled by elements of Lx∨y and ap, ap−1, . . . ,
a1, x ∨ y, b1, b2, . . . , bq, with any multiplicity. If one of the nodes, say y, is adjacent to the maximal element of S,
then x ∨ y = y and q = 0.

Examples and Non-Examples

The following are three examples of valid hyper T ‐paths for S = {2, 3} with respect to C3.

The following is a non‐example because it violates the ordering condition for even connections
given in Rule (7).

Work In Progress

We are currently working on an analogue of snake graphs, a type of combinatorial object used in
some proofs of positivity. Our construction already yields positivity in some additional cases.
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