Factorization of classical characters twisted by roots of unity

Arvind Ayyer and Nishu Kumari* (Indian Institute of Science)

Abstract

- Fix $t \ge 2$, $n \in \mathbb{Z}^+$. Consider the irreducible characters of representations of GL_{tn} , SO_{2tn+1} , Sp_{2tn} and O_{2tn} over \mathbb{C} , evaluated at elements $\omega^k x_i$ for $0 \le k \le t-1$ and $1 \le i \le n$, where ω is a primitive t^{th} root of unity.
- Motivated by the case of GL_{tn} , considered by D. J. Littlewood (AMS press, 1950) and independently by D. Prasad (Israel J. Math., 2016).
- We characterize partitions for which the specialized irreducible character is nonzero in terms of what we call z-asymmetric partitions, where z is an integer which depends on the group.
- The non-zero character factorizes into characters of smaller classical groups.
- We also give product formulas for general z-asymmetric partitions and t-cores.
- Finally, we show that there are infinitely many z-asymmetric t-cores for $t \ge z + 2$.

Notations and Definitions

- $X = (x_1, \dots, x_n)$ a tuple of commuting indeterminates. $X^j = (x_1^j, \dots, x_n^j), j \in \mathbb{Z}$. $\overline{X} = \left(\frac{1}{x_1}, \dots, \frac{1}{x_n}\right)$.
- Partition and its beta-set:

 $\lambda = (4, 4, 2, 1) \vdash 11, \ell(\lambda) = 4, \text{rk}(\lambda) = 2$

$$\mu_1 + (\lambda, 0, \dots, 0, -\text{rev}(\mu)) = (\mu_1 + \lambda_1, \dots, \mu_1 + \lambda_k, \underbrace{\mu_1, \dots, \mu_1}_{2n-j-k}, \mu_1 - \mu_j, \dots, \mu_1 - \mu_2, 0).$$

• The parts of the beta set congruent to $i \pmod{t}$ for $i \in [0, t-1]$:

• For $\lambda = (\lambda_1, \dots, \lambda_k)$ and $\mu = (\mu_1, \dots, \mu_j)$ partitions, $k + j \leq 2n$,

• t-core of λ : Consider tj+i, $0 \le j \le n_i(\lambda, m)-1$, $0 \le i \le t-1$

 $\operatorname{core}_3(\lambda) = (4-3, 3-2, 1-1, 0) = (1, 1).$ • *t*-quotient of λ : For each $i \in [0, t-1]$, consider $\left| \frac{\beta^{(i)}(\lambda, m)}{t} \right|$

 $\operatorname{quo}_3(\lambda) = (\lambda^{(0)}, \lambda^{(1)}, \lambda^{(2)}), \quad \lambda^{(0)} = (2 - 1, 1 - 0) = (1, 1), \quad \lambda^{(1)} = (2 - 1, 0 - 0) = (1), \quad \lambda^{(2)} = \emptyset.$

• z-asymmetric partition: $(\alpha | \alpha + z), z \in \mathbb{Z}$.

 $\lambda = (4, 2, 2, 1, 1) = (3, 0|4, 1)$ symplectic (1-asymmetric) 3-core

Weyl Character Formulas

Let λ be a partition of length at most n.

• The *Schur polynomial* or *general linear* (type A) character of GL_n indexed by λ :

$$s_{\lambda}(X) = \frac{\det\limits_{1 \leq i,j \leq n} \left(x_i^{\beta_j(\lambda,n)}\right)}{\det\limits_{1 \leq i,j \leq n} \left(x_i^{n-j}\right)}.$$

• The odd orthogonal (type B) character of the group SO(2n+1) indexed by λ :

$$so_{\lambda}(X) = \frac{\det_{1 \le i, j \le n} \left(x_i^{\beta_j(\lambda, n) + 1/2} - \bar{x}_i^{\beta_j(\lambda, n) + 1/2} \right)}{\det_{1 \le i, j \le n} \left(x_i^{n - j + 1/2} - \bar{x}_i^{n - j + 1/2} \right)}.$$

• The symplectic (type C) character of the group Sp(2n) indexed by λ :

$$\mathrm{sp}_{\lambda}(X) = \frac{\det \left(x_i^{\beta_j(\lambda,n)+1} - \bar{x}_i^{\beta_j(\lambda,n)+1}\right)}{\det \left(x_i^{n-j+1} - \bar{x}_i^{n-j+1}\right)}.$$

• The even orthogonal (type D) character of the group O(2n) indexed by λ :

$$\mathbf{o}_{\lambda}^{\text{even}}(X) = \frac{2 \det_{1 \leq i,j \leq n} \left(x_i^{\beta_j(\lambda,n)} + \bar{x}_i^{\beta_j(\lambda,n)} \right)}{\left(1 + \delta_{\lambda_n,0} \right) \det_{1 \leq i,j \leq n} \left(x_i^{n-j} + \bar{x}_i^{n-j} \right)},$$

• For $\ell(\lambda) \leq tn$, let $\sigma_{\lambda} \in S_{tn}$ be the permutation that rearranges the parts of $\beta(\lambda, tn)$ such that

$$\beta_{\sigma_{\lambda}(j)}(\lambda, tn) \equiv q \pmod{t}, \quad \sum_{i=0}^{q-1} n_i(\lambda, tn) + 1 \le j \le \sum_{i=0}^q n_i(\lambda, tn),$$

arranged in decreasing order for each $q \in \{0, 1, \dots, t-1\}$.

Schur Factorization

Theorem (D. J. Littlewood (AMS press, 1950), D. Prasad (Israel J. Math., 2016))

Let λ be a partition of length at most tn indexing an irreducible representation of GL_{tn} and $quo_t(\lambda) =$ $(\lambda^{(0)},\ldots,\lambda^{(t-1)})$. Then the Schur polynomial $s_{\lambda}(X,\omega X,\ldots,\omega^{t-1}X)$ is given as follows.

1. If $core_t(\lambda)$ is non-empty, then

$$s_{\lambda}(X, \omega X, \dots, \omega^{t-1}X) = 0.$$

2. If $core_t(\lambda)$ is empty, then

$$s_{\lambda}(X, \omega X, \dots, \omega^{t-1}X) = \operatorname{sgn}(\sigma_{\lambda})(-1)^{\frac{n(n+1)}{2}\frac{t(t-1)}{2}} \prod_{i=0}^{t-1} s_{\lambda^{(i)}}(X^{t}).$$

Factorization of other Classical Characters

Theorem (Ayyer-Kumari, [1], 2021)

Let λ be a partition of length at most tn indexing an irreducible representation of Sp_{2tn} and $\mathrm{quo}_t(\lambda)=0$ $(\lambda^{(0)},\ldots,\lambda^{(t-1)})$. Then the Sp_{2tn} -character $\operatorname{sp}_{\lambda}(X,\omega X,\ldots,\omega^{t-1}X)$ is given as follows.

1. If $core_t(\lambda)$ is not a symplectic t-core, then

$$\operatorname{sp}_{\lambda}(X, \omega X, \dots, \omega^{t-1}X) = 0.$$

2. If $core_t(\lambda)$ is a symplectic *t*-core with rank r, then

$$\operatorname{sp}_{\lambda}(X, \omega X, \dots, \omega^{t-1}X) = (-1)^{\epsilon} \operatorname{sgn}(\sigma_{\lambda}) \operatorname{sp}_{\lambda^{(t-1)}}(X^{t}) \prod_{i=0}^{\left\lfloor \frac{t-3}{2} \right\rfloor} s_{\mu_{i}}(X^{t}, \overline{X}^{t}) \times \begin{cases} \operatorname{so}_{\lambda^{\left(\frac{t}{2}-1\right)}}(X^{t}) & t \text{ even,} \\ 1 & t \text{ odd,} \end{cases}$$

where

$$\epsilon = -\sum_{i=\left\lfloor \frac{t}{2} \right\rfloor}^{t-2} \binom{n_i(\lambda)+1}{2} + \begin{cases} \frac{n(n+1)}{2} + nr & t \text{ even,} \\ 0 & t \text{ odd,} \end{cases}$$

and
$$\mu_i = \lambda_1^{(t-2-i)} + (\lambda^{(i)}, 0, \dots, 0, -\text{rev}(\lambda^{(t-2-i)})), \quad 0 \le i \le \left| \frac{t-3}{2} \right|.$$

• Example: t=2, n=1 and $a \ge b \ge 0$. $\operatorname{sp}_{(a,b)}(x,-x)$ is nonzero if and only if a and b have the same parity.

$$\mathrm{sp}_{(a,b)}(x,-x) = \begin{cases} -\mathrm{sp}_{(\frac{b-1}{2})}(x^2) \, \mathrm{so}_{(\frac{a+1}{2})}(x^2) & a \text{ and } b \text{ are odd,} \\ \mathrm{sp}_{(\frac{a}{2})}(x^2) \, \mathrm{so}_{(\frac{b}{2})}(x^2) & a \text{ and } b \text{ are even.} \end{cases}$$

• We give similar factorization results for the irreducible characters of classical groups of type B and D, namely O_{2tn} [1, Theorem 2.15] and SO_{2tn+1} [1, Theorem 2.17], where we specialize the elements as before.

Generating Functions

• The set of z-asymmetric partitions and z-asymmetric t-cores - \mathcal{P}_z and $\mathcal{P}_{z,t}$ respectively.

Theorem (Ayyer-Kumari, [1], 2021)

For $z \in \mathbb{Z}$,

$$\sum_{\lambda \in \mathcal{P}_z} q^{|\lambda|} = \prod_{k \ge 0} (1 + q^{z+1+2k}) = (-q^{z+1}; q^2)_{\infty}, \quad (a; q)_{\infty} = \prod_{j=0}^{\infty} (1 - aq^j).$$

Theorem (Ayyer-Kumari, [1], 2021)

For $|z| \ge t - 1$, the empty partition is the only t-core in $\mathcal{P}_{z,t}$.

Theorem (Ayyer-Kumari, [1], 2021)

Let $0 \le z \le t-2$. Represent elements of $\mathbb{Z}^{\left\lfloor \frac{t-z}{2} \right\rfloor}$ by $\left(z_0, \dots, z_{\left\lfloor \frac{t-z-2}{2} \right\rfloor}\right)$ and define $b \in \mathbb{Z}^{\left\lfloor \frac{t-z}{2} \right\rfloor}$ by $\vec{b}_i = t-z-1-2i$. Then there exists a bijection $\phi: \mathcal{P}_{z,t} \to \mathbb{Z}^{\left\lfloor \frac{t-z}{2} \right\rfloor}$ satisfying $|\lambda| = t||\phi(\vec{\lambda})||^2 - \vec{b} \cdot \phi(\vec{\lambda})$, where \cdot represents the standard inner product.

• Ramanujan theta function:

$$f(a,b) = \sum_{n=-\infty}^{\infty} a^{\frac{n(n+1)}{2}} b^{\frac{n(n-1)}{2}}.$$

Corollary (Ayyer-Kumari, [1], 2021)

Let $p_{z,t}(m)$ be the cardinality of partitions in $\mathcal{P}_{z,t}$ of size m. For $0 \le z \le t-2$, we have

$$\sum_{m>0} p_{z,t}(m)q^m = \prod_{i=0}^{\lfloor (t-z-2)/2 \rfloor} f(q^{2i+z+1}, q^{2t-2i-z-1}).$$

Reference

[1] A. Ayyer, N. Kumari, Factorization of Classical characters twisted by roots of unity, to appear in Journal of Algebra. arXiv identifier: 2109.11310.