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Background

+By Run-sort, we mean rearranging the runs of a
permutation σ ∈ Sn in lexicographical order.
Example 1.

runsort(29 7 368 5 14) = 14 29 368 5 7

+We study permutations whose runs are run-sorted,
i.e., run-sorted permutations (resp. RSP(n) ).

+A bijection on permutations over [n] = {1, 2, . . . , n},
which keeps track of the peak-values before and after
applying the run-sort function.

+We further show that the descent generating polyno-
mials, An(t) forRSP(n) are real rooted, and satisfy
an interlacing property.

Definition 2.A peak of a permutation σ ∈ Sn, is an integer
i, 1 < i < n such that σ(i − 1) < σ(i) > σ(i + 1) and the
corresponding σ(i) is a peak-value of σ.
Given a permutation σ, we let runsort(σ) denote the per-

mutation obtained by rearranging the runs of σ lexicographi-
cally. Hence, if σ ∈ Sn, then runsort(σ) ∈ RSP(n). We let
PKV(σ) denote the set of peak-values of the permutation σ, and
SPV(σ) := PKV(runsort(σ)).

A recursion for permutations
We recursively construct permutations of length n, from those of
length n− 1, by inserting n somewhere.

Let a ∈ {∅, 1, 2, . . . , n− 1}, σ ∈ Sn−1. Then

Staya(σ) =
{
insert n after a
insert n at the start if a = ∅

Note: We never consider a = ∅ as an entry in the permutation.
It is just a label.
Then we have the map B : {∅, 1, 2, . . . , n − 1} × Sn−1 → Sn,
i.e., f (a, σ) = Staya(σ).

Question: Can we track peak-values?

Recursively constructing permutations while track-
ing peaks

For simplicity, we set π′ := Staya(π) and we let k be the value
immediately succeeding a in π (unless a is the last entry in π).
Then we have the following choices.
(1) a = ∅, so PKV(π′) = PKV(π).
(2) a is the last entry of π, so PKV(π′) = PKV(π).
(3) a ∈ PKV(π). Then PKV(π′) = (PKV(π) \ {a}) ∪ {n}.
(4) k ∈ PKV(π). Then PKV(π′) = (PKV(π) \ {k}) ∪ {n}.
(5) Otherwise PKV(π′) = PKV(π) ∪ {n}.
Example 3.Consider a permutation π = 21574368 ∈ S8. Then
+ Stay∅(π) = 921574368
+ Stay8(π) = 215743689
+ Stay7(π) = 215794368
+ Stay5(π) = 215974368.

Runsort function
• Let runsort : Sn→ RSP(n) (not injective!)
• Let SPV(σ) := PKV(runsort(σ))
• Surprise! (see title)∑

σ∈Sn
XPKV(σ) =

∑
σ∈Sn

XSPV (σ)

• Next we describe the bijection η : Sn→ Sn, where PKV(σ) =
SPV(η(σ)).
For any n ≥ 1, there is a bijection

C : {∅, 1, 2, . . . , n− 1} × Sn−1→ Sn

which has the following properties (C is not Staya(σ) in general!)
(1) If a = ∅, then SPV(π′) = SPV(π).
(2) If a is the last entry of runsort(π), then SPV(π′) = SPV(π).
(3) If a ∈ SPV(π), then

SPV(π′) = (SPV(π) \ {a}) ∪ {n}.

(4) If k ∈ SPV(π), then
SPV(π′) = (SPV(π) \ {k}) ∪ {n}.

(5) If a is not the last entry of runsort(π), and neither a or k are
in SPV(π), then

SPV(π′) = SPV(π) ∪ {n}.

Table showing examples of how η works

σ η(σ)
12 12
21 21
123 123
132 132
213 231
231 213
312 312
321 321

σ η(σ)
1234 1234
1243 1243
1324 1324
1342 1342
1423 1423
1432 1432
2134 2341
2143 2431

σ η(σ)
2314 2413
2341 2134
2413 2314
2431 2143
3124 3412
3142 3142
3214 3421
3241 3214

σ η(σ)
3412 3124
3421 3241
4123 4123
4132 4132
4213 4231
4231 4213
4312 4312
4321 4321

Coopman and Rubey, see [CR21] have recently found more
properties of permutations using the runsort function.

Probabilistic statements
Let σ ∈ Sn be a uniformly chosen permutation, and let
σ′ := runsort(σ). As n → ∞ does this curve approach some
limit curve?

Figure 1: A random permutation matrix σ′ after runsort, for n = 20000.
The entries equal to 1 are shaded black.
This question has recently been answered in the affirmative by

Alon, Defant and Kravitz, see [ADK22].

Real-rootedness and interlacing
roots
Definition 4 ([Wag92]). Let g be a polynomial of degree n with
non-positive roots g1 ≤ g2 ≤ · · · ≤ gn. If f is a degree n − 1
polynomial with non-positive roots f1 ≤ f2 ≤ · · · ≤ fn−1, we
say that the roots of f interlace those of g, if

g1 ≤ f1 ≤ g2 ≤ f2 ≤ · · · ≤ fn−1 ≤ gn ≤ 0.
we show that the polynomials

An(t) :=
∑

σ∈RSP(n)
tdes(σ)

are real-rooted. Moreover, the roots of An−1(t) interlace the
roots of An(t).
We let fn,k be the number of run-sorted permutations of [n]

having k runs. In [NRB20], it was proved that the numbers fn,k
satisfy the recurrence relation

fn,k = kfn−1,k + (n− 2)fn−2,k−1 whenever 1 ≤ k < n.

Hence we have that
tAn(t) =

∑
π∈RSP(n)

tdes(π)+1 =
∑
k≥1

tkfn,k. (1)

From Equation 1, let us set Rn(t) := tAn(t).

Lemma 5.Rn(t) satisfies the recurrence

Rn(t) = tR′n−1(t) + t(n− 2)Rn−2(t), R1(t) = R2(t) = t. (2)

From Equation 2, we then prove Theorem 6 using a result by
Wagner, See, [Wag92, Sec. 3] as a main tool.
Theorem 6.The polynomials

Rn(t) =
∑

π∈RSP(n)
tdes(π)+1

satisfy Rn−1� Rn for all n ≥ 1. In particular, they are all
real-rooted.
Finally, we end with a recursion for a multivariate extension of
An(t).
Theorem 7. For all integers n ≥ 1, let

An(x) :=
∑

π∈RSP(n)

∏
j∈DES(π)

xn−j.

Then

An(x) = 1 +
n−2∑
i=1

((
n− 1
i

)
− 1
)
xiAi(x)

by indexing of the descent set from the end.
This solves the problem posed in [NRB20] for the exponential

generating function of the An(t).
Below, we illustrate A5(x) where x = (x1, x2, x3, x4, x5) for all
π ∈ RSP(5).
We have that

A5(x) = 1 + 3x3 + 5x2 + 3x1 + 3x3x1

.

1 12345
x3 13245, 14235, 15234
x2 12435, 12534, 13425, 13524, 14523
x1 12354, 12453, 13452
x3x1 13254, 14253, 15243
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