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Abstract

We provide lower and upper bounds on the minimum size
of a maximum stable set over graphs of flag spheres, as a
function of the dimension of the sphere and the number of
vertices.
Further, we use stable sets to obtain an improved Lower
Bound Theorem for the face numbers of flag spheres.

Main invariant: α(d, n)

For a graph G = (V, E), S ⊆ V is stable (a.k.a. indepen-
dent) if the induced graph G[S] has no edges.
The maximal size of a stable set in G is denoted α(G).
The clique complex is denoted cl(G) and its geometric re-
alization ||cl(G)||.

α(d, n) := min(α(G) : |V (G)| = n, ||cl(G)|| ∼= Sd−1)

Question: For fixed d, what is the growth of α(d, n) as
n → ∞?

α(d, n)=?

Conjecture: For every d ≥ 2 and n ≥ 2d,

α(d, n) = ⌈n + d − 3
2(d − 1)

⌉.

Case d = 2: True, easy.
Case d = 3: True, lower bound via the 4-Color-Theorem
(4CT), upper bound via construction, cl(W3,k), see Fig.1.
Case d = 4: Upper bound holds via construction.

Theorem: Let d ≥ 4 and n ≥ 2d. Then
1
4
n

1
d−2 ≤ α(d, n) ≤


⌈ n

⌊d/4⌋⌉ + 1
6

.

Lower bound: Ramsey type inductive argument, uses the
4CT for the base case d = 4.
Upper bound: take joins of the construction of flag 3-spheres
cl(W ′

4,k), see Fig.2, and up to 3 suspensions, to reach a flag
sphere of dimension d − 1.

The graphs Wd,k
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Figure 1: The graph W3,3 is depicted. The bold black and bold white
vertices indicate stable sets of size α(W3,3) = 4. The shaded edges
indicate edges that are not visible from a front view of the depicted
realization of the flag 2-sphere cl(W3,3) in 3-space.

Fix an integer d ≥ 2. For k ≥ 1 let G = Wd,k be the
following graph:
Vertices: V (Wd,k) = {a, b} ∪ X1 ∪ . . . ∪ Xk

where the sets X1, . . . , Xk, {a, b} are pairwise disjoint and
|Xi| = 2d − 2 for every i ∈ {1, . . . , k}.
Denote Xi = {yi

1, . . . , yi
d−1, zi′

1 , . . . , zi
d−1}.

Edges:
• a is complete to X1 and b is complete to Xk and there

are no other edges incident with a, b.
• For every i, the induced graph Wd,k[Xi] is the

1-skeleton of the (d − 1)-dimensional crosspolytope,
a.k.a. the graph of the octahedral (d − 2)-sphere, with
non-edges yi

1z
i
1, . . . , yi

d−1z
i
d−1.

• Xi is anticomplete to Xj if |i − j| > 1.
• For i ∈ {1, . . . , k − 1} and s, t ∈ {1, . . . , d − 1} let us

say that the pair (yi
sz

i
s, yi+1

t zi+1
t ) is positive if yi

sy
i+1
t

and zi
sz

i+1
t are edges, and yi

sz
i+1
t and zi

sy
i+1
t are

non-edges, and negative if yi
sy

i+1
t and zi

sz
i+1
t are

non-edges, and yi
sz

i+1
t and zi

sy
i+1
t are edges. Then the

pair (yi
sz

i
s, yi+1

t zi+1
t ) is positive if t ≥ s and negative if

t < s.
• All pairs of vertices of Wd,k that are not mentioned

above are non-edges.

Observation: For all k ≥ 1,

||cl(W3,k)|| ∼= S2,

and
α(W3,k) = ⌈|V (W3,k)|

4
⌉.

From W4,k to W ′
4,k

W4,k induces a cell structure on the 3-sphere, consisting of
tetrahedra with a vertex a or b and of triangular prisms
consisting of a triangle on Xi and the corresponding trian-
gle on Xi+1 (the corresponding vertices differ only in the
superscript).
All these triangular prisms are triangulated by considering
all tertrahedra defined by cliques of W4,k on this set of 6
vertices, except for the following two (for a fixed 1 ≤ i ≤
k − 1):
yi

1, zi
2, yi

3; yi+1
1 , zi+1

2 , yi+1
3 and its “antipodal prism”

zi
1, yi

2, zi
3; zi+1

1 , yi+1
2 , zi+1

3 . We add the edge yi
1z

i+1
2 to

triangulate the first, and the edge zi
1y

i+1
2 to triangulate the

second (such added edge is “bent" inside the prism, see
Fig.2).
Denote the resulted graph by W ′

4,k.
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Figure 2: Two triangular prisms with the induced graphs on their
vertices. The grey edges indicate edges not visible from a front view of
the depicted realization embeded in 3-space. The red edge is bent
inside the right prism. In purple are sample induced tetrahedra. Note
that in each prism, its clique complex triangulates it.

Observation: for all k ≥ 1,

||cl(W ′
4,k)|| ∼= S3,

and
α(W ′

4,k) = ⌈|V (W ′
4,k)| + 1
6

⌉.

The Lower Bound Theorem: flag case

Barnette’s LBT,’71: For all d ≥ 3, all 1 ≤ i ≤ d − 1,
and every simplicial (d − 1)-sphere ∆ on n vertices,

fi(∆) ≥ fi(S(d, n)),

where S(d, n) is a stacked (d − 1)-sphere on n vertices.
Reduction: f1(∆) ≥ dn −

d+1
2

.
So, asymptotically: Fix d. For every ϵ > 0, if n is large
enough then f1(∆) ≥ (d − ϵ)n.
Gal’s conjecture,’05: For all d ≥ 3, and every flag
(d − 1)-sphere ∆ on n vertices,

f1(∆) ≥ (2d − 3)n − 2d(d − 2).

Theorem:
For all d ≥ 6, and n large enough, each n-vertex flag (d−1)-
sphere ∆ has at least (d + 0.987

2d+1)n edges.

Proof sketch: via graph rigidity

• We will choose the largest ϵ = ϵ(d) > 0 for which
f1 < (d + ϵ)n yields a contradiction.

• By Turán’s theorem, for ∆ = cl(G), G has an
independent set I of size |I| ≥ n

2(d+ϵ)+1.
• Assume d ≥ 5. By Kalai’s proof of the LBT,

g2 := f1 − dn +
d+1

2
 is the dimension of the stress

space of a generic geometric embedding of G in Rd.
• Further, the closed star of each vertex v contains a

stress such that some edge containing v has a nonzero
weight.

• Picking one such stress per vertex in I gives an
independent set of stresses. Thus,

ϵn +

d + 1

2

 ≥ f1 − dn +

d + 1

2

 ≥ |I| ≥ n

2(d + ϵ) + 1
.

• Solve the quadric for ϵ.

Conjecture: For all d ≥ 5, the graph of every flag (d−1)-
sphere is (d + 1)-rigid.

If true, then f1 ≥ (d + 1)f0 −
d+2

2
 would follow, for flag

spheres of dimension d − 1 ≥ 4.
Reduction: via the standard Cone and Gluing lemmas in
Graph Rigidity, the case d = 5 suffices.


