Generalized permutahedra and positive flag Dressians

UNIVERSITY OF TWENTE.

Michael Joswig, Georg Loho, Dante Luber, Jorge Alberto Olarte joswig@math.tu-berlin.de, g.loho@utwente.nl, luber@math.tu-berlin.de, olarte@math.tu-berlin.de

Permutahedra

The **(regular) permutahedron** is the convex hull of the orbit of the point (1, ..., n) under the action of Sym_n under permuting coordinates.

Figure 1: Π_3 (left) and Π_4 (right).

A generalized permutahedron is a polytope with all edges parallel to an edge of the permutahedron.

Flag matroids

A matroid polytope P_M is the convex hull of the indicator vectors of bases $\mathcal{B}(M)$ of a matroid M. A matroid quotient $M_1 \leftarrow M_2$ if every flat of M_1 is a flat of M_2 . A flag matroid $\mathcal{M} = (M_1, \ldots, M_n)$ is a sequence of matroid quotients. The polytope of a flag matroid is the Minkowski sum

Figure 2: A flag matroid polytope and its matroid summands.

Flag matroid polytopes are exactly the subpolytopes of Π_n which are generalized permutahedra [2].

Bruhat polytopes

The (strong) Bruhuat order on Sym_n is the partial order where $\sigma \leq \tau$ if σ can be expressed as a subword of reduced expression for τ . A Bruhat (interval) polytope is the convex hull of a Bruhat interval.

Figure 3: The polytope corresponding to the Bruhat interval $[e, \tau_2 \tau_1]$ (left) and a flag matroid polytope which is not Bruhat (right).

The flag variety

The flag variety Fl(n) is the space of all flags $L_1 \subset \cdots \subset L_n$ of linear subspaces. Given a flag $\mathcal{L} = L_1 \subset \cdots \subset L_n$, then $\mathcal{M}(\mathcal{L}) := (M(L_1), \ldots, M(L_n))$ is a flag matroid. The **totally non-negative** (**TNN**) part of Fl(n) consists of all flags \mathcal{L} where $P_{\mathcal{M}(\mathcal{L})}$ is a Bruhat polytope [5].

Permutahedral subdivisions

A **permutahedral subdivision** of a generalized permutahedron P is a subdivision into generalized permutahedra.

Figure 4: Two permutahedral subdivisions of Π_4 inducing the same subdivision on the 2-skeleton.

A valuated matroid is a function $\mathcal{B}(M) \to \mathbb{R}$ inducing a regular permutahedral subdivision on P_M . A valueted flag matroid (μ_1, \ldots, μ_n) is a sequence of valuated matroids such that the mixed subdivision of P_M is permutahedral [3]. Points in the trop(Fl(n)) are valueted flag matroids.

Main results

In [7] it is shown that a subdivision is matroidal, if it is matroidal in the 3-skeleton. We show a flag analogue:

Theorem 1 ([4]). A function $w: \operatorname{Sym}(n) \to \mathbb{R}$ induces a permutahedral subdivision if and only if it induces a permutahedral subdivision of the 2-skeleton of Π_n . That is:

(HEX) for every hexagon abcdef in the 2-skeleton of Π_n , we have

 $(HXE) \ w(a) + w(c) + w(e) = w(b) + w(d) + w(f),$

(HXM) the maximum in $\max(w(a) + w(d), w(b) + w(e), w(c) + w(f))$ is attained twice;

(SQR) for every square face abcd of Π_n , w(a) + w(c) = w(b) + w(d).

Remark: We are using the min convention; (HXM) is degree -2 tropical equation.

In [1, 6] it is shown that the tropicalization of the positive Grassmannian corresponds to positroidal subdivisions. We show a flag analogue:

Theorem 2 ([4]). Let $w : \operatorname{Sym}_n \to \mathbb{R}$. The following are equivalent

- 1. $w(\sigma) = \mu_1(I_1) + \cdots + \mu_n(I_n)$ where $I_1 \subset \cdots \subset I_n$ is the flag corresponding to σ and (μ_1, \ldots, μ_n) is a valuated flag matroid coming from the tropicalization of the positive flag variety.
- 2. The regular subdivision induced by w consists of Bruhat polytopes.
- 3. w satisfies (SQR), (HXE) and

(HXM+) for every hexagon abcdef of Π_n , where b is the lowest permutation, $w(b) + w(e) = \max(w(a) + w(d), w(c) + w(f))$.

The conditions above define the **positive flag Dressian**.

References

- [1] N. Arkani-Hamed, T. Lam, and M. Spradlin. Positive configuration space. Comm. Math. Phys., 384(2):909–954, Jun 2021.
- [2] A. V. Borovik, I. M. Gelfand, and N. White. Coxeter matroids, volume 216 of Progress in Mathematics. Boston, MA: Birkhäuser, 2003.
- [3] M. Brandt, C. Eur, and L. Zhang. Tropical flag varieties. Adv. in Math., 384:107695, 2021.
- [4] Michael Joswig, Georg Loho, Dante Luber, and Jorge Alberto Olarte. Generalized permutahedra and positive flag dressians. arXiv preprint arXiv:2111.13676, 2021.
- [5] Y. Kodama and L. Williams. The full Kostant–Toda hierarchy on the positive flag variety. Comm. Math. Phys., 335(1):247–283, Apr 2015.
- [6] D. Speyer and L. Williams. The positive dressian equals the positive tropical grass-mannian. *Trans. Amer. Math. Soc. Ser. B*, 8(11):330–353.
- [7] D. E. Speyer. Tropical linear spaces. SIAM Journal on Discrete Mathematics, 22(4):1527–1558, 2008.