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Permutahedra

The (regular) permutahedron is the convex hull of the orbit of the
point (1, . . . , n) under the action of Symn under permuting coordinates.

Figure 1: Π3 (left) and Π4 (right).

A generalized permutahedron is a polytope with all edges parallel to
an edge of the permutahedron.

Flag matroids

A matroid polytope PM is the convex hull of the indicator vectors of
bases B(M) of a matroid M . A matroid quotient M1 ←M2 if every �at
of M1 is a �at of M2. A �ag matroidM = (M1, . . . ,Mn) is a sequence of
matroid quotients. The polytope of a �ag matroid is the Minkowski sum

PM := PM1
+ · · ·+ PMn

.

Figure 2: A �ag matroid polytope and its matroid summands.

Flag matroid polytopes are exactly the subpolytopes of Πn which are gen-
eralized permutahedra [2].

Bruhat polytopes

The (strong) Bruhuat order on Symn is the partial order where σ ≤ τ
if σ can be expressed as a subword of reduced expression for τ . A Bruhat
(interval) polytope is the convex hull of a Bruhat interval.

Figure 3: The polytope corresponding to the Bruhat interval [e, τ2τ1] (left) and
a �ag matroid polytope which is not Bruhat (right).

The �ag variety

The �ag variety Fl(n) is the space of all �ags L1 ⊂ · · · ⊂ Ln of lin-
ear subspaces. Given a �ag L = L1 ⊂ · · · ⊂ Ln, then M(L) :=
(M(L1), . . . ,M(Ln)) is a �ag matroid. The totally non-negative
(TNN) part of Fl(n) consists of all �ags L where PM(L) is a Bruhat
polytope [5].

Permutahedral subdivisions

A permutahedral subdivision of a generalized permutahedron P is a
subdivision into generalized permutahedra.

Figure 4: Two permutahedral subdivisions of Π4 inducing the same subdivision
on the 2-skeleton.

A valuated matroid is a function B(M)→ R inducing a regular permu-
tahedral subdivision on PM . A valueted �ag matroid (µ1, . . . , µn) is a
sequence of valuated matroids such that the mixed subdivision of PM is
permutahedral [3]. Points in the trop(Fl(n)) are valueted �ag matroids.

Main results

In [7] it is shown that a subdivision is matroidal, if it is matroidal in the
3-skeleton. We show a �ag analogue:

Theorem 1 ([4]). A function w : Sym(n) → R induces a permutahedral
subdivision if and only if it induces a permutahedral subdivision of the 2-
skeleton of Πn. That is:

(HEX) for every hexagon abcdef in the 2-skeleton of Πn, we have

(HXE) w(a) + w(c) + w(e) = w(b) + w(d) + w(f),

(HXM) the maximum in max(w(a)+w(d), w(b)+w(e), w(c)+w(f))
is attained twice;

(SQR) for every square face abcd of Πn, w(a) + w(c) = w(b) + w(d).

Remark: We are using the min convention; (HXM) is degree -2 tropical
equation.
In [1, 6] it is shown that the tropicalization of the positive Grassmannian
corresponds to positroidal subdivisions. We show a �ag analogue:

Theorem 2 ([4]). Let w : Symn → R. The following are equivalent

1. w(σ) = µ1(I1) + · · · + µn(In) where I1 ⊂ · · · ⊂ In is the �ag cor-
responding to σ and (µ1, . . . , µn) is a valuated �ag matroid coming
from the tropicalization of the positive �ag variety.

2. The regular subdivision induced by w consists of Bruhat polytopes.

3. w satis�es (SQR), (HXE) and

(HXM+) for every hexagon abcdef of Πn, where b is the lowest permuta-
tion, w(b) + w(e) = max(w(a) + w(d), w(c) + w(f)).

The conditions above de�ne the positive �ag Dressian.
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