
Chromatic Quasisymmetric Class Functions of linearized combinatorial Hopf
monoids
Jacob A. White

University of Texas Rio Grande Valley

Quasisymmetric Class Functions

A quasisymmetric class function is a function Ψ : G → Qsym that
is constant on conjugacy classes.

Given an integer composition α |= n with k parts, we define the
monomial quasisymmetric function

Mα =
∑

i1<i2<...<ik

xα1
i1
xα2
i2

· · ·xαkik

Given a quasisymmetric class function Ψ of degree n, we write
Ψ(g) =

∑
α|=n

ψα(g)Mα.

Then ψα are class functions, and we can write Ψ =
∑
α|=n

ψαMα.

Coloring Mixed Graphs

Given a finite setN , an acyclic mixed graph is a triple (N,U, D⃗) with
a undirected edge set U , a directed edge set D⃗, and no directed cycles.

An automorphism ofG is a bijection g : G → G that preserves edges
(of both types). Let G be a group of automorphisms of G.
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Figure 1. an acyclic mixed graph.

A (weak / strong) coloring of G is a function f : N → N subject to:

1. For every uv ∈ U , we have f (u) ̸= f (v).
2. For every (u, v) ∈ D, we have f (u) ≤ f (v).
3. For every (u, v) ∈ D, we have f (u) < f (v).

Let F(G) (F(G)) denote the set of weak/strong colorings.

Chromatic Quasisymmetric Class Function

If G ↷ G, then G ↷ F(G) and G ↷ F(G) via gf = f ◦ g−1, where
f ∈ F(G) and g ∈ G.

Given commuting indeterminates x1, x2, . . . and g ∈ G, we define

X(G,G,x; g) =
∑

f∈F(G):gf=f

∏
v∈N

xf (v).

and
X(G,G,x; g) =

∑
f∈F(G):gf=f

∏
v∈N

xf (v).

Thus X(G,G,x) is the weak chromatic quasisymmetric class func‐
tion of (G,G), andX(G,G,x) is the strong chromatic quasisymmet‐
ric class function.

The orbital chromatic polynomials χ(G,G, x) and χ(G,G, x) count
the number of orbits of proper colorings with largest color at most
x.
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Figure 2. various colorings, where white < orange < magenta < cyan

There are two irreducible characters for Z/2Z. We let det denote
the nontrivial character, and ρ denote the regular character. For our
example mixed graph, we have

X(G,G,x) = M1,3 +M2,2 + ρM1,2,1 + ρM2,1,1 +M1,1,2 + ρM1,1,1,1
= F1,3 + F2,2 + detF1,2,1 + detF2,1,1 − F1,1,2 − detF1,1,1,1

χ(G,G, x) = 2
(
x

2

)
+ 3

(
x

3

)
+
(
x

4

)
X(G,G,x) = M1,1,2 + ρM1,1,1,1

χ(G,G, x) =
(
x

3

)
+
(
x

4

)

Given two group characters χ and ψ, we write χ ≤G ψ if ψ − χ is a
group character. Given a quasisymmetric class function Ψ, we let
[Mα]Ψ be the coefficient ofMα in Ψ, which is a class function.

Theorem

We have X(G,G,x) and X(G,G,x) are quasisymmetric class
functions. Moreover, for any α |= |N |, then [Mα]X(G,G,x) and
[Mα]X(G,G,x) are permutation characters.
For α a coarsening of β, we have [Mα]X(G,G,x) ≤G
[Mβ]X(G,G,x) and [Mα]X(G,G,x) ≤G [Mβ]X(G,G,x).

Similarly, if we write χ(G,G, x) =
∑|N |
i=0 fi

(x
i

)
, then we have:

1. For i ≤ j ≤ |N | + 1 − i, we have fi ≤ fj.
2. For all 1 ≤ i ≤ j, we have

(|N |−1
j−1

)
fi ≤

(|N |−1
i−1

)
fj.

If we write χ(G,G, x) =
∑|N |
i=0 fi

(x
i

)
, we obtain the same inequal‐

ities. For ordinary graphs, with trivial group action, the last in‐
equality is new.

We say that X(G,G,x) isM‐increasing and χ(G,G, x) is strongly
flawless.
Are there similar results for:

P ‐partitions of a poset or double poset?
generic functions on matroids, or generalized permutohedra?
generalized colorings of a graph where every connected
component of every monochromatic subgraph has a Hamilton
path?

Idea: work with linearized combinatorial Hopf monoids in species.

1. The Hopf algebra / monoid structure allows us to define
‘colorings’,

2. The species structure allows us to define group actions.

Species and group actions

Set species = an endofunctor F : Set → Set on the category of
finite sets with bijections. Given a finite set N , we obtain a set
FN such that SN ↷ FN .
Linear species = a functor F : Set → V ec to the category of
finite dimensional vector spaces over a field K and linear
transformations.
Given F, the linearization KF is defined by letting (KF)N be the
vector space with basis FN .

Examples:

If we let EN = {1} for every finite set N , then we obtain the
exponential species.
If we letMGN denote the set of acyclic mixed graphs on N , we
obtain a species.
We can also consider the subspecies of graphsG or posets P of
MG.
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Figure 3. Acyclic mixed graphs

Given f ∈ FN , and g ∈ SN , we say g is an automorphism of f if
gf = f .

Linearized combinatorial Hopf monoids

A connected Hopf monoid is a linear species H with maps

1. µS,T : HS ⊗ HT → HS⊔T
2. ∆S,T : HS⊔T → HS ⊗ HT

for every pair of disjoint sets S, T , subject to axioms:

1. Associativity: For all disjoint A,B,C , we have
µA,B⊔C ◦ (1A ⊗ µB,C) = µA⊔B,C ◦ (µA,B ⊗ 1C).

2. Coassociativity: For all disjoint A,B,C , we have
(1A ⊗ ∆B,C) ◦ ∆A,B⊔C = (∆A,B ⊗ 1C) ◦ ∆A⊔B,C.

3. Compatibility: For all disjoint sets A,B,C,D, we have
∆A⊔C,B⊔D ◦ µA⊔B,C⊔D =
(µA,C ⊗ µB,D) ◦ (1A ⊗ βB,C ⊗ 1D) ◦ (∆A,B ⊗ ∆C,D) where
βB,C(x⊗ y) = y ⊗ x.

4. Connectedness: dim H∅ = 1.

A linearized Hopf monoid is a set species H, such that K(H) is a
Hopf monoid, and furthermore, for every pair of disjoint finite sets
M and N , we have the following:

1. For every x ∈ HM ,y ∈ HN , we have µ(x ⊗ y) ∈ HM∪N .
2. For every h ∈ HM⊔N , if ∆M,N (h) ̸= 0 then there exists

h \N ∈ HM and h/M ∈ HN such that ∆M,N (h) = h \N ⊗ h/M .

For MG, the product is disjoint union of mixed graphs. Given
disjoint setsM,N , and a mixed graph g ∈ MGM∪N , we define

∆M,N (g) =

{
0 if there exists m ∈ M,n ∈ N, (n,m) ∈ g
g|M ⊗ g|N otherwise

where g|S is the induced subgraph on S. Thus MG is a linearized
Hopf monoid. It contains graphsG and posets P as Hopf
submonoids.

Chromatic Quasisymmetric Class Function

A Hopf monoid character is a natural transformation φ : K(H) →
K(E) such that, for all disjoint finite setsM and N , and all x ∈ HM
and all y ∈ HN , we have φM (x) · φN (y) = φM⊔N (x · y).
It is linearized if φ(h) ∈ {0, 1} for all h ∈ HN and all N .

For MG, we define

φ(g) =

{
0 there exists uv ∈ g
1 otherwise

and

φ(g) =

{
1 g has no directed or undirected edges
0 otherwise

GivenH, h ∈ HN , i ∈ N, and f : N → N, we definemonochromatic
subobjects

hf,i := h \ f−1(N \ [i])/f−1([i− 1]).

Given φ, a φ‐proper coloring is a function f : N → N such that
φ(hf,i) = 1 for all i ∈ N. Let Fφ(h) denote the set of φ‐proper
colorings. If G ↷ h as automorphisms, then G ↷ Fφ(h) via gf =
f ◦ g−1, where f ∈ Fφ(h) and g ∈ G.

Given commuting indeterminates x1, x2, . . . and g ∈ G, we define

ΨH,φ(h,G,x; g) =
∑

f∈Fφ(h):gf=f

∏
v∈N

xf (v).

Thus ΨH,φ(h,G,x) is the φ‐chromatic quasisymmetric class func‐
tion of (h,G).
The orbital chromatic polynomial ΨH,φ(h,G, x) counts the number
of orbits of proper colorings with largest color at most x.

Given G ∈ MGN , and G ↷ G as automorphisms, We have

1. ΨMG,φ(G,G,x) = X(G,G,x).
2. ΨMG,φ(G,G,x) = X(G,G,x).

Theorem

Let H be a linearized Hopf monoid and φ be a linearized Hopf
monoid character. Then the following are equivalent:

1. For every finite set N , every h ∈ HN , and every group G ↷ h
as automorphisms, we have ΨH,φ(h,G,x) isM‐increasing.

2. For every finite set N , every h ∈ HN , and every k > 0 with
k < |N |, if φ(h) = 1, then there exists S ⊂ N with |S| = k and
φ(h \ S) = φ(h/(N \ S)) = 1.

Moreover, if ΨH,φ(h,G,x) isM‐increasing, then:

1. ΨH,φ(h,G, x) is strongly flawless.
2. If we write ΨH,φ(h,G, x) =

∑|N |
i=0 fi

(x
i

)
, then for all i ≤ j, we

have
(|N |−1
j−1

)
fi ≤

(|N |−1
i−1

)
fj.

Wanted: A condition on H and φ that ensures ΨH,φ(h,G,x) is
F ‐effective for all h. Here, F ‐effective means that
[Fα]ΨH,φ(h,G,x) is a character for all α.
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