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Lattices

Definition
A (finite) lattice L is a (finite) poset where every family X of
elements of L has a join

∨
X (smallest upper bound) and a meet∧

X (greatest lower bound).

Definition
The canonical join representation of an element x is a
subset J ⊆ L such that:∨

J = x ,
J ′ ( J ⇒

∨
J ′ 6= x ,

J is lowest in L with these properties.
When it always exist, we call the lattice join semidistributive.
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Irreducibility
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Definition
The elements that are their own canonical join representation are
the join irreducibles. In finite lattices, they are those covering only
one element. Canonical join representations are made of join
irreducibles.
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Canonical join complex

Definition (Reading ’15, Barnard ’19, ’20)

The canonical join complex associated to a join semidistributive
lattice L is the simplicial complex CJ C(L) with:

vertices := {join irreducibles},
faces := {canonical join representations}.

Theorem (Reading ’15)

It is a flag simplicial complex.
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Canonical join complex
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Lattice congruences

Definition
A lattice congruence is an equivalence relation ≡ on L such
that x ≡ x ′ and y ≡ y ′ implies x ∨ y ≡ x ′ ∨ y ′ and x ∧ y ≡ x ′ ∧ y ′.

Theorem (Reading ’16)

A lattice congruence is characterized by the join irreducibles it
contracts (merge with the one they cover). More precisely, there is
a poset on join irreducibles called forcing order such that all ideals
of this poset correspond to a lattice congruence.

Theorem (Reading ’15)

The canonical join complex behaves well with lattice congruences.
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Lattice congruences
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Weak order on permutations

Proposition

The (right) weak order is a semidistributive lattice on permutations
ordered by containment of their inversion sets.

inv(132) = {(2, 3)} ⊆ {(1, 3), (2, 3)} = inv(312)
132 4 312

21

12

321

312

132

123

213

231

1234

2134 1324 1243

2314 3124 2143 1342 1423

2341 3214 2413 3142 1432 4123

3241 2431 3412 4213 4132

3421 4231 4312

4321
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A nice bijection

σ = 526413

Permutation table:
{(σi , i) | i ∈ [n]}.

Highlight descents.
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Theorem (Reading ’15)

This is a bijection between
permutations and Non-Crossing Arc
Diagrams (NCADs).
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Why nice ?

Theorem (Reading ’15)

The bijection between permutations and NCADs provides a
combinatorial model for the canonical join representations in the
weak order.

σ

cjr(σ)
{ ,

,
}

join irreducible
permutations single arcs
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Non-crossing complex

Theorem (Reading ’15)

The canonical join complex of the weak order is isomorphic to the
non-crossing complex.
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Forcing on arcs

Proposition (Reading ’15)

The forcing on arcs corresponds to the extension of arcs.
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And what about meet?

Some time well spent
Everything we said has a counterpart in terms of canonical meet
representations, canonical meet complexes and NCADs.

d ∧ e ∧ g
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Representations of intervals

Definition (A., Pilaud ’22+)

Canonical representation of an interval:

cr([x , y ]) := cjr(x) t cmr(y).

Canonical complex CC(L) of a semidistributive lattice L:
vertices := {join irreducibles} t {meet irreducibles},
faces := J tM such that:

J is a canonical join representation,
M is a canonical meet representation,∨
J ≤

∧
M.

Theorem (A., Pilaud ’22+)

The canonical complex is a well defined flag simplicial complex. It
contains the canonical join and meet complexes. It behaves as well
as those with respect to taking quotients of the lattice.
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Back to our example

∨
∅

b c

b ∨ c
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a ∨ b a ∨ c
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d

a ∨ e
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d∨
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The canonical complex of the weak order

To the interval [526413, 564231],

1 2 3 4 5 6

1
2
3
4
5
6

1 2 3 4 5 6

1
2
3
4
5
6

we associate the superimposition of diagrams:
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The canonical complex of the weak order

Theorem (A., Pilaud ’22+)

This is a bijection between intervals of the weak order and
Semi-Crossing Arc Bidiagrams (SCABs).

7 7 7 3
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7 7 7 3 3

Doriann Albertin The canonical complex of the weak order UGE - LIGM 16 / 19



Lattices and canonical join representations Weak order on permutations and arcs Canonical complexes

The canonical complex of the weak order

Theorem (A., Pilaud ’22+)

This is a bijection between intervals of the weak order and
Semi-Crossing Arc Bidiagrams (SCABs).

7 7 7 3

7 7 7 3

7 7 7 3 3

Doriann Albertin The canonical complex of the weak order UGE - LIGM 16 / 19



Lattices and canonical join representations Weak order on permutations and arcs Canonical complexes

The canonical complex of the weak order

Theorem (A., Pilaud ’22+)

This is a bijection between intervals of the weak order and
Semi-Crossing Arc Bidiagrams (SCABs).

7 7 7 3

7 7 7 3

7 7 7 3 3

Doriann Albertin The canonical complex of the weak order UGE - LIGM 16 / 19



Lattices and canonical join representations Weak order on permutations and arcs Canonical complexes

The canonical complex of the weak order

Theorem (A., Pilaud ’22+)

This bijection between intervals of the weak order and SCABs
provides a combinatorial model for the canonical complex of the
weak order: the semi-crossing complex.
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Kreweras complement

Problem
Given a congruence ≡ of the weak order and the canonical meet
representation of the top element of a class, find the canonical join
representation of the bottom element of this class.

When ≡ contracts all arcs but those shaped like , we
recover the classical Kreweras complement on non-crossing
partitions:
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Thank
you!
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