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Lattices and canonical join representations
°

Definition

A (finite) lattice L is a (finite) poset where every family X of
elements of L has a join \/ X (smallest upper bound) and a meet
/\ X (greatest lower bound).

Definition
The canonical join representation of an element x is a
subset J C L such that:

o \/J=x,

o JSJC U= VI #x,

@ Jis lowest in L with these properties.

When it always exist, we call the lattice join semidistributive.
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Lattices and canonical join representations

°
Irreducibility

ave

Definition

The elements that are their own canonical join representation are
the join irreducibles. In finite lattices, they are those covering only
one element. Canonical join representations are made of join
irreducibles.
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Lattices and canonical join representations
[ el

Canonical join complex

Definition (Reading '15, Barnard '19, '20)

The canonical join complex associated to a join semidistributive
lattice L is the simplicial complex C7C(L) with:

@ vertices := {join irreducibles},

o faces := {canonical join representations}.
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Canonical join complex

Definition (Reading '15, Barnard '19, '20)

The canonical join complex associated to a join semidistributive
lattice L is the simplicial complex C7C(L) with:

@ vertices := {join irreducibles},

o faces := {canonical join representations}.

Theorem (Reading '15)

It is a flag simplicial complex.
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Lattices and canonical join representations
L 1]

Lattice congruences

Definition

A lattice congruence is an equivalence relation = on L such
that x=x"and y =y implies xVy=x"Vy and x Ay =x" Ay
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Lattice congruences

Definition

A lattice congruence is an equivalence relation = on L such

that x=x"and y = y/ impliesxVy=x'Vy and x Ay =x' Ay’
Its classes are intervals of the lattice.

The quotient lattice associated to a congruence is the natural
lattice on the classes of the congruence.

Theorem (Reading '16)

A lattice congruence is characterized by the join irreducibles it
contracts (merge with the one they cover). More precisely, there is
a poset on join irreducibles called forcing order such that all ideals
of this poset correspond to a lattice congruence.
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Lattice congruences

Definition

A lattice congruence is an equivalence relation = on L such

that x=x"and y = y/ impliesxVy=x'Vy and x Ay =x' Ay’
Its classes are intervals of the lattice.

The quotient lattice associated to a congruence is the natural
lattice on the classes of the congruence.

Theorem (Reading '16)

A lattice congruence is characterized by the join irreducibles it
contracts (merge with the one they cover). More precisely, there is
a poset on join irreducibles called forcing order such that all ideals
of this poset correspond to a lattice congruence.

Theorem (Reading '15)

The canonical join complex behaves well with lattice congruences.
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Weak order on permutations and arcs

The (right) weak order is a semidistributive lattice on permutations
ordered by containment of their inversion sets.

inv(132) = {(2,3)} C {(1,3), (2.3)} = inv(312)
132 < 312
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Weak order on permutations and arcs

A nice bijection "

o = 526413

Permutation table:

{(oi, i) i € [n]}. Y
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o = 526413 6— @
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Weak order on permutations and arcs
°

A nice bijection

o = 526413 6— @

Permutation table: 5 —\

{(oi, i) i € [n]}. 4
Highlight descents. 3
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This is a bijection between 1 2 3 4 5 6
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Diagrams (NCAD:s). [-\-f—\
N
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Theorem (Reading '15)

The bijection between permutations and NCADs provides a
combinatorial model for the canonical join representations in the
weak order.
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Weak order on permutations and arcs
°

Why nice 7

Theorem (Reading '15)

The bijection between permutations and NCADs provides a
combinatorial model for the canonical join representations in the

weak order.
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Weak order on permutations and arcs
°

Non-crossing complex

Theorem (Reading '15)

The canonical join complex of the weak order is isomorphic to the
non-crossing complex.
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The forcing on arcs corresponds to the extension of arcs.
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Canonical complexes
°

And what about meet?

Some time well spent

Everything we said has a counterpart in terms of canonical meet
representations, canonical meet complexes and NCADs.
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°

And what about meet?

Some time well spent

Everything we said has a counterpart in terms of canonical meet
representations, canonical meet complexes and NCADs.
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Canonical complexes
.
Representations of intervals
Definition (A., Pilaud '22+)

Canonical representation of an interval:

cr([x, y]) :==cjr(x) U cmr(y).

Canonical complex CC(L) of a semidistributive lattice L:

o vertices := {join irreducibles} L {meet irreducibles},
o faces :=J U M such that:

o J is a canonical join representation,
e M is a canonical meet representation,

o \VJ<AM.

Theorem (A., Pilaud '22+)

The canonical complex is a well defined flag simplicial complex. It
contains the canonical join and meet complexes. It behaves as well
as those with respect to taking quotients of the lattice.

y
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Canonical complexes
®00

The canonical complex of the weak order

To the interval [526413,564231],
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we associate the superimposition of diagrams:

Doriann Albertin The canonical complex of the weak order UGE - LIGM 15 /19



Canonical complexes
oeo

The canonical complex of the weak order

Theorem (A., Pilaud '22+)

This is a bijection between intervals of the weak order and
Semi-Crossing Arc Bidiagrams (SCABs).
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The canonical complex of the weak order
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Canonical complexes
ooe

The canonical complex of the weak order

Theorem (A., Pilaud '22+)

This bijection between intervals of the weak order and SCABs
provides a combinatorial model for the canonical complex of the
weak order: the semi-crossing complex.
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Canonical complexes
.

Kreweras complement

Problem

Given a congruence = of the weak order and the canonical meet
representation of the top element of a class, find the canonical join
representation of the bottom element of this class.
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Given a congruence = of the weak order and the canonical meet
representation of the top element of a class, find the canonical join
representation of the bottom element of this class.

When = contracts all arcs but those shaped like /-\ we

recover the classical Kreweras complement on non-crossing
partitions:
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