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Rotor-Routing Induces the Only Consistent Sandpile
Torsor Structure on Plane Graphs

FPSAC 2022

Alex McDonough (UC Davis)

Joint work with Ankan Ganguly (Brown University)

Full paper: arXiv:2203.15079

Animations: https://youtu.be/2StlAfnONMs

July 18, 2022
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Ribbon Graphs

A ribbon graph G (also called a combinatorial map) is a graph along with a
choice of cyclic order of edges around each vertex (clockwise for this talk).
Ribbon graphs are used to represent graph embeddings.

A plane graph is a ribbon graph with no edge crossings (a planar
embedding). Of the ribbon graphs above, only the middle is a plane graph.
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Single-Chip Rotor-Routing Algorithm (With Sink)

Input: a ribbon graph G , a spanning tree T , a sink vertex s, and a chip c on any
non-sink vertex.

1 Orient the edges of T toward s. Every vertex v ∈ V (G) \ s has a single
outgoing edge called the rotor at v .

2 Rotate the rotor at c and then move c along it.

3 Repeat step 2 until c reaches the sink, then remove c.

4 Forget the orientation of the rotors and let T ′ be their edges.

Output: T ′

See Clip 1
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Facts about Rotor-Routing

Rotor-routing was introduced under the name “Eulerian Walkers Model” by
Priezzhev, D. Dhar, A. Dhar, and Krishnamurthy in 1996. The following
lemmas are implied by their results:

Lemma
The output T ′ is always a spanning tree.

Lemma
If the single-chip rotor-routing algorithm is performed multiple times, the order of
chips does not affect the final tree. See Clip 2

The 2008 paper “Chip Firing and Rotor-Routing on Directed Graphs” by
Holroyd, Levine, Mészáros, Peres, Propp, and Wilson is an excellent survey of
rotor-routing and sandpile ideas.
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Multiple-Chip Rotor-Routing Algorithm (With Sink)

Input: a ribbon graph G , a spanning tree T , a sink vertex s, and a collection C of
chips on non-sink vertices.

1 Orient the edges of T toward s. Every vertex v ∈ V (G) \ s has a single
outgoing edge called the rotor at v .

2 Choose any c ∈ C. Rotate the rotor at c and then move c along it. If c
reaches the sink, remove it from C.

3 Repeat step 2 until C = ∅.

4 Forget the orientation of the rotors and let T ′ be their edges.

Output: T ′
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The Sandpile Group of a Graph

Let G be a finite connected graph with vertices V (G).

A degree 0 divisor is an assignment of an integral number of “chips” to each
vertex (allowing negative chips) so that there are 0 total chips.

The degree 0 divisors under pointwise addition form a group called Div0(G).

The Laplacian matrix ∆ is D − A, where D is the degree matrix of G and A
is the adjacency matrix of G .

Definition
The sandpile group S(G) is Div0(G)/imZ(∆). See Clip 3

Alex McDonough (UC Davis) (UC Davis) A Unique Consistent Sandpile Torsor Structure July 18, 2022 6 / 19

https://youtu.be/2StlAfnONMs?t=111


.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

The Sandpile Group of a Graph

Let G be a finite connected graph with vertices V (G).

A degree 0 divisor is an assignment of an integral number of “chips” to each
vertex (allowing negative chips) so that there are 0 total chips.

The degree 0 divisors under pointwise addition form a group called Div0(G).

The Laplacian matrix ∆ is D − A, where D is the degree matrix of G and A
is the adjacency matrix of G .

Definition
The sandpile group S(G) is Div0(G)/imZ(∆). See Clip 3

Theorem (sandpile matrix-tree theorem for graphs, Biggs 1999)
The size of S(G) is the number of spanning trees of G.
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Sandpile Rotor-Routing Algorithm (With Sink)

Input: a ribbon graph G , a spanning tree T , a sink vertex s, and an element of
the sandpile group S ∈ S(G).

1 Orient the edges of T toward s. Every vertex v ∈ V (G) \ s has a single
outgoing edge called the rotor at v . Let D be any representative of S such
that D(v) ≥ 0 for v ̸= s. Let C be a set of D(v) chips at each v ̸= s.

2 Choose any c ∈ C. Rotate the rotor at c and then move c along it. If c
reaches the sink, remove it from C.

3 Repeat step 2 until C = ∅

4 Forget the orientation of the rotors and let T ′ be their edges.

Output: T ′
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Rotor-Routing and the Sandpile Group

Theorem (HLMPPW, 2008)
The algorithm in the previous slide is well defined. See Clip 4

Alex McDonough (UC Davis) (UC Davis) A Unique Consistent Sandpile Torsor Structure July 18, 2022 8 / 19

https://youtu.be/2StlAfnONMs?t=178


.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

Rotor-Routing and the Sandpile Group

Theorem (HLMPPW, 2008)
The algorithm in the previous slide is well defined. See Clip 4 Furthermore, for any
spanning trees T and T ′, there is exactly one S ∈ S(G) that maps T to T ′.

In other words, rotor routing defines a free transitive action of S(G) on the
spanning trees of G .
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Rotor-Routing and the Sandpile Group

Theorem (HLMPPW, 2008)
The algorithm in the previous slide is well defined. See Clip 4 Furthermore, for any
spanning trees T and T ′, there is exactly one S ∈ S(G) that maps T to T ′.

In other words, rotor routing defines a free transitive action of S(G) on the
spanning trees of G .

Question (Ellenberg, 2012)
When is the rotor-routing action preserved after changing the sink vertex?
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Rotor-Routing and the Sandpile Group

Theorem (HLMPPW, 2008)
The algorithm in the previous slide is well defined. See Clip 4 Furthermore, for any
spanning trees T and T ′, there is exactly one S ∈ S(G) that maps T to T ′.

In other words, rotor routing defines a free transitive action of S(G) on the
spanning trees of G .

Question (Ellenberg, 2012)
When is the rotor-routing action preserved after changing the sink vertex?

Theorem (Chan-Church-Grochow, 2013)
The rotor-routing action is preserved regardless of sink vertex if and only if G is a
plane graph. See Clip 5
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Sink-Free Rotor-Routing Algorithm

Input: a plane graph G , a spanning tree T , and an element of the sandpile group
S ∈ S(G).

1 Choose any s ∈ V (G). Orient the edges of T toward s. Every vertex
v ∈ V (G) \ s has a single outgoing edge called the rotor at v . Let D be any
representative of S such that D(v) ≥ 0 for v ̸= s. Let C be a set of D(v)
chips at each v ̸= s.

2 Choose any c ∈ C. Rotate the rotor at c and then move c along it. If c
reaches the sink, remove it from C.

3 Repeat step 2 until C = ∅

4 Forget the orientation of the rotors and let T ′ be their edges.

Output: T ′ We write that rG([D],T ) = T ′.
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Sandpile Torsor Algorithms

Definition
A sandpile torsor action on a plane graph G is a free transitive action of S(G) on
the spanning trees of G .
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Sandpile Torsor Algorithms

Definition
A sandpile torsor action on a plane graph G is a free transitive action of S(G) on
the spanning trees of G .

Definition
A sandpile torsor algorithm is a function which assigns a sandpile torsor action to
every plane graph.
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Sandpile Torsor Algorithms

Definition
A sandpile torsor action on a plane graph G is a free transitive action of S(G) on
the spanning trees of G .

Definition
A sandpile torsor algorithm is a function which assigns a sandpile torsor action to
every plane graph.

We saw that rotor-routing induces a sandpile torsor algorithm, but are there
other natural algorithms?
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“Other” Sandpile Torsor Algorithms

in 2012, Baker and Wang used the Bernardi process to define another
sandpile torsor algorithm.
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“Other” Sandpile Torsor Algorithms

in 2012, Baker and Wang used the Bernardi process to define another
sandpile torsor algorithm.

Theorem (Baker-Wang, 2012)
On plane graphs, the rotor-routing algorithm and Bernardi algorithm are
equivalent.
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“Other” Sandpile Torsor Algorithms

in 2012, Baker and Wang used the Bernardi process to define another
sandpile torsor algorithm.

Theorem (Baker-Wang, 2012)
On plane graphs, the rotor-routing algorithm and Bernardi algorithm are
equivalent.

Other descriptions were found for this algorithm (see Yuen 2017 and
Kálmán-Lee-Tóthmérész 2022+), but these are still identical to rotor-routing.
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“Other” Sandpile Torsor Algorithms

in 2012, Baker and Wang used the Bernardi process to define another
sandpile torsor algorithm.

Theorem (Baker-Wang, 2012)
On plane graphs, the rotor-routing algorithm and Bernardi algorithm are
equivalent.

Other descriptions were found for this algorithm (see Yuen 2017 and
Kálmán-Lee-Tóthmérész 2022+), but these are still identical to rotor-routing.

Conjecture (Klivans, 2018)
For plane graphs, there is only one sandpile torsor structure.
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“Other” Sandpile Torsor Algorithms

in 2012, Baker and Wang used the Bernardi process to define another
sandpile torsor algorithm.

Theorem (Baker-Wang, 2012)
On plane graphs, the rotor-routing algorithm and Bernardi algorithm are
equivalent.

Other descriptions were found for this algorithm (see Yuen 2017 and
Kálmán-Lee-Tóthmérész 2022+), but these are still identical to rotor-routing.

Conjecture (Klivans, 2018)
For plane graphs, there is only one sandpile torsor structure.

The first challenge to tackling this conjecture is defining sandpile torsor
structure.
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Sandpile Torsor Structure

Proposition (Ganguly-M., 2022+)
Rotor-routing produces 4 closely related sandpile torsor algorithms:

clockwise rotor-routing,
counterclockwise rotor-routing,
inverse clockwise rotor-routing, and
inverse counterclockwise rotor-routing.
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Sandpile Torsor Structure

Proposition (Ganguly-M., 2022+)
Rotor-routing produces 4 closely related sandpile torsor algorithms:

clockwise rotor-routing,
counterclockwise rotor-routing,
inverse clockwise rotor-routing, and
inverse counterclockwise rotor-routing.

Definition
Two sandpile torsor algorithms have the same structure if they differ by inverting
the action and/or the ribbon structure.
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Sandpile Torsor Structure

Proposition (Ganguly-M., 2022+)
Rotor-routing produces 4 closely related sandpile torsor algorithms:

clockwise rotor-routing,
counterclockwise rotor-routing,
inverse clockwise rotor-routing, and
inverse counterclockwise rotor-routing.

Definition
Two sandpile torsor algorithms have the same structure if they differ by inverting
the action and/or the ribbon structure.

To prevent simple but contrived counterexamples to Klivans’ conjecture, we
want our algorithm to act consistently across different plane graphs.
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A Consistency Condition

Theorem (Ganguly-M., 2022+)
Let G be a plane graph with a spanning tree T , and incident vertices c and s.
Let T ′ = rG([c − s],T ).

1 For any e ∈ E (G) (not incident to both c and s), if e ∈ T ∩ T ′, then

rG([c − s],T ) \ e = rG/e([c − s],T \ e). See Clip 6

2 For any e ∈ E (G), if e /∈ T ∪ T ′, then

rG([c − s],T ) = rG\e([c − s],T ). See Clip 7

3 For any e ∈ E (G), if there is a cut vertex x such that all paths from e to c or
s pass through x, then

e ∈ T ⇐⇒ e ∈ T ′. See Clip 8

Alex McDonough (UC Davis) (UC Davis) A Unique Consistent Sandpile Torsor Structure July 18, 2022 13 / 19

https://youtu.be/2StlAfnONMs?t=230
https://youtu.be/2StlAfnONMs?t=273
https://youtu.be/2StlAfnONMs?t=305


.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

Consistency in General

Definition
A sandpile torsor algorithm is consistent if it satisfies the 3 properties on the
previous slide.
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Consistency in General

Definition
A sandpile torsor algorithm is consistent if it satisfies the 3 properties on the
previous slide.

Theorem (Ganguly-M.,2022+)
Every consistent sandpile torsor algorithm has the same structure as rotor-routing
(i.e. it is unique up to two Z2 actions).
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Consistency in General

Definition
A sandpile torsor algorithm is consistent if it satisfies the 3 properties on the
previous slide.

Theorem (Ganguly-M.,2022+)
Every consistent sandpile torsor algorithm has the same structure as rotor-routing
(i.e. it is unique up to two Z2 actions).

To prove this, we first prove that it suffices to consider a subset of situations
where rotor-routing takes just one step.

We then use induction to reduce to 4 special cases.

Resolving these cases requires a variety of methods and a great deal of work.
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Regular Matroids

In 2017, Backman, Baker, and Yuen showed how to generalize the Bernardi
action to regular matroids.

Instead of a ribbon structure, they require acyclic circuit and cocircuit
signatures.

The definitions of consistency and sandpile torsor structure generalize
naturally to regular matroids.

Conjecture
The Backman-Baker-Yuen algorithm is consistent.
All consistent sandpile torsor algorithms on regular matroids have the same
structure.

Alex McDonough (UC Davis) (UC Davis) A Unique Consistent Sandpile Torsor Structure July 18, 2022 15 / 19



.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

Thanks for Listening!

c

z5 = s

z4

z3 z2

z1

z0 = x

w1
0

w1
3w2

3

w1
4

e1
ê1
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