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Order Polytopes

Let P be a partially ordered set on the set of elements [d ] := {1, . . . , d}.

The order polytope is defined as

O(P) =
{

x = (x1, . . . , xd) ∈ [0, 1]d : xi ≤ xj for i <P j
}
.
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Order Polytopes: An Example

Let P be the diamond poset
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Order Polytopes: An Example

Then O(P) = {(x1, x2, x3, x4) ∈ [0, 1]4 : x4 ≤ x2 ≤ x1 and x4 ≤ x3 ≤ x1}.
From the upper order ideals of P,

∅ 1
2

1

3

1 1

2 3 4

2 3

1

we get that O(P) is the convex hull of the points
(0, 0, 0, 0), (1, 0, 0, 0), (1, 1, 0, 0), (1, 0, 1, 0), (1, 1, 1, 0) and (1, 1, 1, 1).

0 1

2

3
5

4

Andrés R. Vindas Meléndez Triangulations 22-July-2022 5 / 22



Order Polytopes: An Example

Then O(P) = {(x1, x2, x3, x4) ∈ [0, 1]4 : x4 ≤ x2 ≤ x1 and x4 ≤ x3 ≤ x1}.

From the upper order ideals of P,

∅ 1
2

1

3

1 1

2 3 4

2 3

1

we get that O(P) is the convex hull of the points
(0, 0, 0, 0), (1, 0, 0, 0), (1, 1, 0, 0), (1, 0, 1, 0), (1, 1, 1, 0) and (1, 1, 1, 1).

0 1

2

3
5

4

Andrés R. Vindas Meléndez Triangulations 22-July-2022 5 / 22



Order Polytopes: An Example

Then O(P) = {(x1, x2, x3, x4) ∈ [0, 1]4 : x4 ≤ x2 ≤ x1 and x4 ≤ x3 ≤ x1}.
From the upper order ideals of P,

∅ 1
2

1

3

1 1

2 3 4

2 3

1

we get that O(P) is the convex hull of the points
(0, 0, 0, 0), (1, 0, 0, 0), (1, 1, 0, 0), (1, 0, 1, 0), (1, 1, 1, 0) and (1, 1, 1, 1).

0 1

2

3
5

4

Andrés R. Vindas Meléndez Triangulations 22-July-2022 5 / 22



Order Polytopes

The dimension of O(P) is the number of elements of P.

The vertices of O(P) correspond to the filters of P, i.e., the upper
order ideals.

Volume of O(P) is the number of linear extensions of P.
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Generalized Snake Posets

Definition

For n ∈ Z≥0, a generalized snake word is a word of the form
w = w0w1 · · ·wn where w0 = ε is the empty letter and wi is in the
alphabet {L,R} for i = 1, . . . , n. The length of the word is n, which is the
number of letters in {L,R}.

Definition

Given a generalized snake word w, the generalized snake poset P(w) is
defined recursively.

The snake poset S5 = P(εLRLRL) and the ladder poset L5 = P(εLLLLL).
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Volume of the Order Polytope of Generalized Snake Posets

Theorem (MB-BB-DH-KS-JV-ARVM-MY, 2022+)

For n ≥ 0, let w = w0w1 · · ·wn be a generalized snake word. If k ≥ 0 is
the largest index such that wk 6= wn, then the normalized volume vn of
O(P(w)) is given recursively by

vn = Cat(n − k + 1)vk + (Cat(n − k + 2)− 2 · Cat(n − k + 1)) vk−1

with v−1 = 1 and v0 = 2.
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Volume of the Order Polytope of Generalized Snake Posets

Corollary (MB-BB-DH-KS-JV-ARVM-MY, 2022+)

The normalized volume of O(Sn) with n ≥ 0 is given recursively by

vn = 2vn−1 + vn−2,

with v−1 = 1 and v0 = 2. These are the Pell numbers.

Corollary (Benedetti et al. 2019, Mészáros–Morales 2019)

The normalized volume of O(Ln) with n ≥ 0 is given by

vn = Cat(n + 2).

Theorem (MB-BB-DH-KS-JV-ARVM-MY, 2022+)

For any generalized snake word w = w0w1 · · ·wn of length n,

volO(Sn) ≤ volO(P(w)) ≤ volO(Ln).
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Triangulations

Consider a polytope P ⊆ Rd . A triangulation T of P is a subdivison of P
into d-simplices.

A triangulation is unimodular if every simplex has normalized volume
one.

A triangulation of P ⊆ Rd is regular if it can be obtained by
projecting the lower envelope of a lifting of P from Rd+1.

Figure: From “Existence of Unimodular
Triangulations” by Haase et al. Figure: From “Triangulations” by De

Loera et al.
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Triangulations of Order Polytopes

Define a hyperplane Hi ,j = {x ∈ Rd : xi = xj} for 1 ≤ i < j ≤ d . The set
of all such hyperplanes induces a triangulation T of O(P) known as the
canonical triangulation, which has the following three fundamental
properties:

1 T is unimodular,

2 the maximal simplices are in bijection with the linear extensions of P,
so the normalized volume of the order polytope is

vol(O(P)) = # of linear extensions of P, and

3 the simplex corresponding to a linear extension (a1, . . . , ad) of P is

σa1,...,ad =
{

x ∈ [0, 1]d : xa1 ≤ xa2 ≤ · · · ≤ xad

}
,

with vertex set {0, ead , ead−1
+ ead , . . . , ea1 + · · ·+ ead = 1}.
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Triangulations of Order Polytopes

What has been studied?

Graded posets (Reiner and Welker 2005)

Non-unimodular triangulations related to graph-associahedra (Féray
and Reiner 2012)

Product of chains (Santos,Stump, and Welker 2017)

s-Lecture hall order polytopes (Bränden Solus 2019)

disjoint union of chains
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Flip Graph & Secondary Polytope

The flip graph of a polytope P
is a graph where each
triangulation corresponds to a
vertex in the graph, and a flip
from a triangulation to another
corresponds to an edge.

The secondary polytope of P is
a polytope of dimension
n − d − 1 (n = number of
vertices of P and d = dim(P))
whose vertices correspond to
regular triangulations of P. The
1-skeleton of the secondary
polytope is the subgraph of the
flip graph induced by the regular
triangulations of P.
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The Order Polytope of Meet-irreducibles

Define P̂(w) to be the generalized snake poset P(w) with 0̂ and 1̂
adjoined.
Let Qw = Irr∧(P̂) denote the poset of meet-irreducibles of P̂.
By the fundamental theorem of finite distributive lattices, P̂ ∼= J(Qw),
where J(Qw) is the lattice of filters of Qw, ordered by reverse
inclusion.

Figure: The lattice P̂(w) for w = εL3R2L4R5L2 (left) and its poset of
meet-irreducibles Qw = Irr∧(P̂).
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The Order Polytope of Meet-irreducibles

Let V denote the subset of words which do not contain the substring LRL
or RLR.

Theorem (MB-BB-DH-KS-JV-ARVM-MY, 2022+)

For w ∈ V, every vertex of the secondary polytope of O(Qw) is a
unimodular triangulation. Thus, every triangulation of O(Qw) is
unimodular.

Theorem (MB-BB-DH-KS-JV-ARVM-MY, 2022+)

Let w ∈ V have length k . The canonical triangulation of O(Qw) admits
exactly k + 1 flips.
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The Order Polytope of Meet-irreducibles

Theorem (MB-BB-DH-KS-JV-ARVM-MY, 2022+)

Let w = εLn−1, and Qw = Irr∧(P̂(w)). The flip graph of triangulations of
O(Qw) is the Cayley graph of the symmetric group Sn+1 with the simple
transpositions as the generating set.
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Twists

Definition

Given a ladder Li , define τi ∈ S|V0| to be the permutation of V0 such that
for v ∈ V0,

τi (v) =


xj−1, if v = xj and j ∈ [s] is even,

xj+1, if v = xj and j ∈ [s] is odd,

v , otherwise.

Li in P̂ containing boxes with
labels wp, . . . ,wq, where
wp < wp+1 < · · · < wq. The left
(right) represents the case where
wq = L (wq = R).
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Twists

Definition

Let T(w) denote the subgroup of S|V0| generated by the set of the τi ’s.

We call T(w) the twist group of P̂(w). Elements of T(w) are called twists
and the elements τi are called elementary twists.
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Twists

Theorem (MB-BB-DH-KS-JV-ARVM-MY, 2022+)

Let w ∈ V, Qw = Irr∧(P̂(w)), and let T and τ(T ) be two triangulations
of O(Qw) where τ is a twist. If T = T +

Z can be flipped at circuit Z and
τ(T +

Z ) = τ(T +
Z )+

τ(Z), then τ(T +
Z )−τ(Z) = τ(T −Z ). In other words, the

following diagram commutes.

T +
Z

flip in Z //

twist
��

T −Z
twist
��

τ(T+
Z ) = τ(T +

Z )+
τ(Z)

flip in τ(Z) // τ(T +
Z )−τ(Z) = τ(T −Z )

Corollary (MB-BB-DH-KS-JV-ARVM-MY, 2022+)

Let w ∈ V, Qw = Irr∧(P̂(w)), and T & τ(T ) be two triangulations of
O(Qw). Then T and τ(T ) admit the same number of flips.
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Twists

Theorem (MB-BB-DH-KS-JV-ARVM-MY, 2022+)

Let w ∈ V and Qw = Irr∧(P̂(w)). The canonical triangulation Tw of
O(Qw) is a regular triangulation, and for any twist τ , τ(Tw) is also a
regular triangulation.

Proof Idea:

Haase diagram of Qw is strongly planar, by work of Mészáros,
Morales, and Striker, O(Qw) is int. equiv. to a flow polytope FGQ

.

The canonical triangulation of O(Qw) maps to
Danilov-Karzonov-Koshevoy triangulations of FGQ

.

DKK triangulations are regular → canonical triangulation of O(Qw)
are regular.

The twist group T(w) acts on the canonical triangulation of O(Qw).

Any twist τ , τ(Tw) corresponds to a framed triangulation of FGQw
, by

DKK we know are regular.
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Conjectures

(i) For w ∈ V, the flip graph of regular triangulations for O(Qw) is
k-regular, where k is the dimension of the secondary polytope of
O(Qw).

(ii) If w ∈ V, all triangulations of O(Qw) are regular.

(iii) The number of regular triangulations of O(Sn) is 2n+1 · Cat(2n + 1).
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The End

¡Gracias!
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