Triangulations, Order Polytopes, and Generalized Snake Posets

Andrés R. Vindas Meléndez (UC Berkeley)

> FPSAC 22-July-2022

4 0 8

Matias von Bell (Inst. of Geom., TU Graz)

Ben Braun (Univ. of Kentucky)

Derek Hanely (Penn State Berend)

Khrystyna Serhiyenko (Univ. of Kentucky)

Julie Vega (Maret School)

Andrés R. Vindas Meléndez (UC Berkeley)

Martha Yip (Univ. of Kentucky)

Order Polytopes

Andrés R. Vindas Meléndez **Andrés R. Vindas Meléndez Caracter Caracter** [Triangulations](#page-0-0) 22-July-2022 3/22

J.

 299

イロト 不倒 トイ君 トイ君

Let P be a partially ordered set on the set of elements $[d] := \{1, \ldots, d\}.$

イロト

Let P be a partially ordered set on the set of elements $[d] := \{1, \ldots, d\}$.

The order polytope is defined as

$$
\mathcal{O}(P) = \left\{ \mathsf{x} = (x_1, \ldots, x_d) \in [0,1]^d : x_i \leq x_j \text{ for } i <_{P} j \right\}.
$$

4 D F

Andrés R. Vindas Meléndez **[Triangulations](#page-0-0)** 22-July-2022 4/22

K ロ ▶ K 御 ▶ K 舌

 \rightarrow

Order Polytopes: An Example

Let P be the diamond poset

4 0 F

Order Polytopes: An Example

Let P be the diamond poset

The six upper order ideals of P are

Andrés R. Vindas Meléndez **[Triangulations](#page-0-0)** 22-July-2022 5/22

K ロ ▶ K 御 ▶ K 舌

 \rightarrow

Order Polytopes: An Example

Then $\mathcal{O}(P)=\{(x_1,x_2,x_3,x_4)\in [0,1]^4: x_4\leq x_2\leq x_1 \text{ and } x_4\leq x_3\leq x_1\}.$

4 D F

Order Polytopes: An Example

Then $\mathcal{O}(P)=\{(x_1,x_2,x_3,x_4)\in [0,1]^4: x_4\leq x_2\leq x_1 \text{ and } x_4\leq x_3\leq x_1\}.$ From the upper order ideals of P,

we get that $O(P)$ is the convex hull of the points $(0, 0, 0, 0), (1, 0, 0, 0), (1, 1, 0, 0), (1, 0, 1, 0), (1, 1, 1, 0)$ and $(1, 1, 1, 1, 1)$.

• The dimension of $O(P)$ is the number of elements of P.

4 ロ ▶ 4 冊

 \rightarrow \equiv \rightarrow

- The dimension of $O(P)$ is the number of elements of P.
- The vertices of $\mathcal{O}(P)$ correspond to the filters of P, i.e., the upper order ideals.

4 0 8

- The dimension of $O(P)$ is the number of elements of P.
- The vertices of $\mathcal{O}(P)$ correspond to the filters of P, i.e., the upper order ideals.
- Volume of $O(P)$ is the number of linear extensions of P.

Andrés R. Vindas Meléndez **Maria Caracteria de La Caracteria de La Caracteria de 22-July-2022** 7/22

≃

K ロ ▶ K 倒 ▶

- イ ヨート

Definition

For $n \in \mathbb{Z}_{\geq 0}$, a generalized snake word is a word of the form ${\sf w}={\sf w}_0{\sf w}_1\cdots{\sf w}_{\sf n}$ where ${\sf w}_0=\varepsilon$ is the empty letter and ${\sf w}_i$ is in the alphabet $\{L, R\}$ for $i = 1, ..., n$. The length of the word is n, which is the number of letters in $\{L, R\}$.

Definition

For $n \in \mathbb{Z}_{\geq 0}$, a generalized snake word is a word of the form ${\sf w}={\sf w}_0{\sf w}_1\cdots{\sf w}_{\sf n}$ where ${\sf w}_0=\varepsilon$ is the empty letter and ${\sf w}_i$ is in the alphabet $\{L, R\}$ for $i = 1, \ldots, n$. The length of the word is n, which is the number of letters in $\{L, R\}$.

Definition

Given a generalized snake word w, the generalized snake poset $P(w)$ is defined recursively.

つひひ

Definition

For $n \in \mathbb{Z}_{\geq 0}$, a generalized snake word is a word of the form ${\sf w}={\sf w}_0{\sf w}_1\cdots{\sf w}_{\sf n}$ where ${\sf w}_0=\varepsilon$ is the empty letter and ${\sf w}_i$ is in the alphabet $\{L, R\}$ for $i = 1, ..., n$. The length of the word is n, which is the number of letters in ${L, R}$.

Definition

Given a generalized snake word w, the generalized snake poset $P(w)$ is defined recursively.

The snake poset $S_5 = P(\varepsilon L R L R L)$ and the ladder poset $\mathcal{L}_5 = P(\varepsilon L L L L L)$.

4 D F

Theorem (MB-BB-DH-KS-JV-ARVM-MY, 2022+)

For $n > 0$, let $w = w_0w_1 \cdots w_n$ be a generalized snake word. If $k > 0$ is the largest index such that $w_k \neq w_n$, then the normalized volume v_n of $\mathcal{O}(P(w))$ is given recursively by

$$
v_n = \text{Cat}(n - k + 1)v_k + (\text{Cat}(n - k + 2) - 2 \cdot \text{Cat}(n - k + 1))v_{k-1}
$$

with $v_{-1} = 1$ and $v_0 = 2$.

つひい

4 D F

Corollary (MB-BB-DH-KS-JV-ARVM-MY, 2022+)

The normalized volume of $\mathcal{O}(S_n)$ with $n \geq 0$ is given recursively by

$$
v_n=2v_{n-1}+v_{n-2},
$$

with $v_{-1} = 1$ and $v_0 = 2$. These are the Pell numbers.

つひひ

Corollary (MB-BB-DH-KS-JV-ARVM-MY, 2022+)

The normalized volume of $\mathcal{O}(S_n)$ with $n \geq 0$ is given recursively by

$$
v_n=2v_{n-1}+v_{n-2},
$$

with $v_{-1} = 1$ and $v_0 = 2$. These are the Pell numbers.

Corollary (Benedetti et al. 2019, Mészáros–Morales 2019)

The normalized volume of $\mathcal{O}(\mathcal{L}_n)$ with $n \geq 0$ is given by

 $v_n = \text{Cat}(n + 2)$.

つへへ

Corollary (MB-BB-DH-KS-JV-ARVM-MY, 2022+)

The normalized volume of $\mathcal{O}(S_n)$ with $n \geq 0$ is given recursively by

$$
v_n=2v_{n-1}+v_{n-2},
$$

with $v_{-1} = 1$ and $v_0 = 2$. These are the Pell numbers.

Corollary (Benedetti et al. 2019, Mészáros–Morales 2019)

The normalized volume of $\mathcal{O}(\mathcal{L}_n)$ with $n \geq 0$ is given by

 $v_n = \text{Cat}(n + 2)$.

Theorem (MB-BB-DH-KS-JV-ARVM-MY, 2022+)

For any generalized snake word $w = w_0w_1 \cdots w_n$ of length n,

vol
$$
\mathcal{O}(S_n) \leq \text{vol } \mathcal{O}(P(\mathsf{w})) \leq \text{vol } \mathcal{O}(\mathcal{L}_n)
$$
.

Andrés R. Vindas Meléndez **Andrés R. Vindas Meléndez Casaca de La Casaca [Triangulations](#page-0-0)** 22-July-2022 10 / 22

 299

Kロト K個ト K ミ

 \mathbf{p} \prec B þ.

Consider a polytope $\mathcal{P} \subseteq \mathbb{R}^d$. A triangulation $\mathcal T$ of $\mathcal P$ is a subdivison of $\mathcal P$ into d-simplices.

イロト

 QQQ

Consider a polytope $\mathcal{P} \subseteq \mathbb{R}^d$. A triangulation $\mathcal T$ of $\mathcal P$ is a subdivison of $\mathcal P$ into d-simplices.

A triangulation is unimodular if every simplex has normalized volume one.

4 D F

Consider a polytope $\mathcal{P} \subseteq \mathbb{R}^d$. A triangulation $\mathcal T$ of $\mathcal P$ is a subdivison of $\mathcal P$ into d-simplices.

- A triangulation is unimodular if every simplex has normalized volume one.
- A triangulation of $\mathcal{P} \subseteq \mathbb{R}^d$ is regular if it can be obtained by projecting the lower envelope of a lifting of ${\mathcal P}$ from ${\mathbb R}^{d+1}.$

Consider a polytope $\mathcal{P} \subseteq \mathbb{R}^d$. A triangulation $\mathcal T$ of $\mathcal P$ is a subdivison of $\mathcal P$ into d-simplices.

- A triangulation is unimodular if every simplex has normalized volume one.
- A triangulation of $\mathcal{P} \subseteq \mathbb{R}^d$ is regular if it can be obtained by projecting the lower envelope of a lifting of ${\mathcal P}$ from ${\mathbb R}^{d+1}.$

Figure: From "Existence of Unimodular Triangulations" by Haase et al. Figure: From "Triangulations" by De

Loera et al.

K ロ ▶ K 何 ▶

 -4

Define a hyperplane $\mathcal{H}_{i,j} = \{\mathsf{x} \in \mathbb{R}^d: \mathsf{x}_i = \mathsf{x}_j\}$ for $1 \leq i < j \leq d.$

イロト

 QQ

Define a hyperplane $\mathcal{H}_{i,j} = \{\mathsf{x} \in \mathbb{R}^d: \mathsf{x}_i = \mathsf{x}_j\}$ for $1 \leq i < j \leq d$. The set of all such hyperplanes induces a triangulation T of $\mathcal{O}(P)$ known as the canonical triangulation, which has the following three fundamental properties:

Define a hyperplane $\mathcal{H}_{i,j} = \{\mathsf{x} \in \mathbb{R}^d: \mathsf{x}_i = \mathsf{x}_j\}$ for $1 \leq i < j \leq d$. The set of all such hyperplanes induces a triangulation T of $\mathcal{O}(P)$ known as the canonical triangulation, which has the following three fundamental properties:

 \bullet τ is unimodular,

Define a hyperplane $\mathcal{H}_{i,j} = \{\mathsf{x} \in \mathbb{R}^d: \mathsf{x}_i = \mathsf{x}_j\}$ for $1 \leq i < j \leq d$. The set of all such hyperplanes induces a triangulation T of $\mathcal{O}(P)$ known as the canonical triangulation, which has the following three fundamental properties:

- \bullet τ is unimodular,
- **2** the maximal simplices are in bijection with the linear extensions of P, so the normalized volume of the order polytope is

 $vol(\mathcal{O}(P)) = \#$ of linear extensions of P, and

つへへ

Define a hyperplane $\mathcal{H}_{i,j} = \{\mathsf{x} \in \mathbb{R}^d: \mathsf{x}_i = \mathsf{x}_j\}$ for $1 \leq i < j \leq d$. The set of all such hyperplanes induces a triangulation T of $\mathcal{O}(P)$ known as the canonical triangulation, which has the following three fundamental properties:

- \bullet τ is unimodular,
- **2** the maximal simplices are in bijection with the linear extensions of P, so the normalized volume of the order polytope is

$$
vol(\mathcal{O}(P)) = # of linear extensions of P, and
$$

3 the simplex corresponding to a linear extension (a_1, \ldots, a_d) of P is

$$
\sigma_{a_1,\ldots,a_d}=\left\{x\in[0,1]^d: x_{a_1}\leq x_{a_2}\leq\cdots\leq x_{a_d}\right\},
$$

withv[e](#page-34-0)rtex set $\{0, \mathsf{e}_{\mathsf{a}_d}, \mathsf{e}_{\mathsf{a}_{d-1}} + \mathsf{e}_{\mathsf{a}_d}, \ldots, \mathsf{e}_{\mathsf{a}_1} + \cdots + \mathsf{e}_{\mathsf{a}_d} = 1\}.$ $\{0, \mathsf{e}_{\mathsf{a}_d}, \mathsf{e}_{\mathsf{a}_{d-1}} + \mathsf{e}_{\mathsf{a}_d}, \ldots, \mathsf{e}_{\mathsf{a}_1} + \cdots + \mathsf{e}_{\mathsf{a}_d} = 1\}.$ $\{0, \mathsf{e}_{\mathsf{a}_d}, \mathsf{e}_{\mathsf{a}_{d-1}} + \mathsf{e}_{\mathsf{a}_d}, \ldots, \mathsf{e}_{\mathsf{a}_1} + \cdots + \mathsf{e}_{\mathsf{a}_d} = 1\}.$ $\{0, \mathsf{e}_{\mathsf{a}_d}, \mathsf{e}_{\mathsf{a}_{d-1}} + \mathsf{e}_{\mathsf{a}_d}, \ldots, \mathsf{e}_{\mathsf{a}_1} + \cdots + \mathsf{e}_{\mathsf{a}_d} = 1\}.$ $\{0, \mathsf{e}_{\mathsf{a}_d}, \mathsf{e}_{\mathsf{a}_{d-1}} + \mathsf{e}_{\mathsf{a}_d}, \ldots, \mathsf{e}_{\mathsf{a}_1} + \cdots + \mathsf{e}_{\mathsf{a}_d} = 1\}.$ $\{0, \mathsf{e}_{\mathsf{a}_d}, \mathsf{e}_{\mathsf{a}_{d-1}} + \mathsf{e}_{\mathsf{a}_d}, \ldots, \mathsf{e}_{\mathsf{a}_1} + \cdots + \mathsf{e}_{\mathsf{a}_d} = 1\}.$ $\{0, \mathsf{e}_{\mathsf{a}_d}, \mathsf{e}_{\mathsf{a}_{d-1}} + \mathsf{e}_{\mathsf{a}_d}, \ldots, \mathsf{e}_{\mathsf{a}_1} + \cdots + \mathsf{e}_{\mathsf{a}_d} = 1\}.$ $\{0, \mathsf{e}_{\mathsf{a}_d}, \mathsf{e}_{\mathsf{a}_{d-1}} + \mathsf{e}_{\mathsf{a}_d}, \ldots, \mathsf{e}_{\mathsf{a}_1} + \cdots + \mathsf{e}_{\mathsf{a}_d} = 1\}.$ $\{0, \mathsf{e}_{\mathsf{a}_d}, \mathsf{e}_{\mathsf{a}_{d-1}} + \mathsf{e}_{\mathsf{a}_d}, \ldots, \mathsf{e}_{\mathsf{a}_1} + \cdots + \mathsf{e}_{\mathsf{a}_d} = 1\}.$ $\{0, \mathsf{e}_{\mathsf{a}_d}, \mathsf{e}_{\mathsf{a}_{d-1}} + \mathsf{e}_{\mathsf{a}_d}, \ldots, \mathsf{e}_{\mathsf{a}_1} + \cdots + \mathsf{e}_{\mathsf{a}_d} = 1\}.$ $\{0, \mathsf{e}_{\mathsf{a}_d}, \mathsf{e}_{\mathsf{a}_{d-1}} + \mathsf{e}_{\mathsf{a}_d}, \ldots, \mathsf{e}_{\mathsf{a}_1} + \cdots + \mathsf{e}_{\mathsf{a}_d} = 1\}.$ $\{0, \mathsf{e}_{\mathsf{a}_d}, \mathsf{e}_{\mathsf{a}_{d-1}} + \mathsf{e}_{\mathsf{a}_d}, \ldots, \mathsf{e}_{\mathsf{a}_1} + \cdots + \mathsf{e}_{\mathsf{a}_d} = 1\}.$

K ロ ▶ K 何 ▶

 -4
4 ロト 4 倒

 299

• Graded posets (Reiner and Welker 2005)

4 D F

 QQ

- Graded posets (Reiner and Welker 2005)
- Non-unimodular triangulations related to graph-associahedra (Féray and Reiner 2012)

- Graded posets (Reiner and Welker 2005)
- Non-unimodular triangulations related to graph-associahedra (Féray and Reiner 2012)
- Product of chains (Santos, Stump, and Welker 2017)

- Graded posets (Reiner and Welker 2005)
- Non-unimodular triangulations related to graph-associahedra (Féray and Reiner 2012)
- Product of chains (Santos, Stump, and Welker 2017)
- s-Lecture hall order polytopes (Bränden Solus 2019)

- Graded posets (Reiner and Welker 2005)
- Non-unimodular triangulations related to graph-associahedra (Féray and Reiner 2012)
- Product of chains (Santos, Stump, and Welker 2017)
- s-Lecture hall order polytopes (Bränden Solus 2019)
- o disjoint union of chains

4 ロ ▶ 4 何 ▶ 4

э

 299

• The flip graph of a polytope P is a graph where each triangulation corresponds to a vertex in the graph, and a flip from a triangulation to another corresponds to an edge.

- The flip graph of a polytope P is a graph where each triangulation corresponds to a vertex in the graph, and a flip from a triangulation to another corresponds to an edge.
- The secondary polytope of P is a polytope of dimension $n - d - 1$ ($n =$ number of vertices of P and $d = \dim(\mathcal{P})$ whose vertices correspond to regular triangulations of P . The 1-skeleton of the secondary polytope is the subgraph of the flip graph induced by the regular triangulations of P .

- The flip graph of a polytope P is a graph where each triangulation corresponds to a vertex in the graph, and a flip from a triangulation to another corresponds to an edge.
- The secondary polytope of $\mathcal P$ is a polytope of dimension $n - d - 1$ ($n =$ number of vertices of P and $d = \dim(\mathcal{P})$ whose vertices correspond to regular triangulations of P . The 1-skeleton of the secondary polytope is the subgraph of the flip graph induced by the regular triangulations of P .

4 ロ ▶ 4 冊

 298

4 ロ ▶ 4 冊

 298

• Define $\hat{P}(w)$ to be the generalized snake poset $P(w)$ with $\hat{0}$ and $\hat{1}$ adjoined.

4 0 8

- Define $\hat{P}(w)$ to be the generalized snake poset $P(w)$ with $\hat{0}$ and $\hat{1}$ adjoined.
- Let $Q_w = \text{Irr}_{\wedge}(\hat{P})$ denote the poset of meet-irreducibles of \hat{P} .

- \bullet Define $\hat{P}(w)$ to be the generalized snake poset $P(w)$ with $\hat{0}$ and $\hat{1}$ adjoined.
- Let $Q_w = \text{Irr}_{\wedge}(\hat{P})$ denote the poset of meet-irreducibles of \hat{P} .
- \bullet By the fundamental theorem of finite distributive lattices, $\hat{P} \cong J(Q_w)$, where $J(Q_w)$ is the lattice of filters of Q_w , ordered by reverse inclusion.

- Define $\hat{P}(w)$ to be the generalized snake poset $P(w)$ with $\hat{0}$ and $\hat{1}$ adjoined.
- Let $Q_w = \text{Irr}_{\wedge}(\hat{P})$ denote the poset of meet-irreducibles of \hat{P} .
- \bullet By the fundamental theorem of finite distributive lattices, $\hat{P} \cong J(Q_w)$, where $J(Q_w)$ is the lattice of filters of Q_w , ordered by reverse inclusion.

Figure: The lattice $\hat{P}(\mathsf{w})$ for $\mathsf{w}=\varepsilon L^3R^2L^4R^5L^2$ (left) and its poset of meet-irreducibles $Q_w = \text{Irr}_{\wedge}(\hat{P})$.

4 ロ ▶ 4 冊

 298

Let V denote the subset of words which do not contain the substring LRL or RIR .

4 D F

 QQ

Let V denote the subset of words which do not contain the substring LRL or RLR.

Theorem (MB-BB-DH-KS-JV-ARVM-MY, 2022+)

For $w \in V$, every vertex of the secondary polytope of $\mathcal{O}(Q_w)$ is a unimodular triangulation. Thus, every triangulation of $\mathcal{O}(Q_w)$ is unimodular.

Let V denote the subset of words which do not contain the substring LRL or RLR.

Theorem (MB-BB-DH-KS-JV-ARVM-MY, 2022+)

For $w \in V$, every vertex of the secondary polytope of $\mathcal{O}(Q_w)$ is a unimodular triangulation. Thus, every triangulation of $\mathcal{O}(Q_w)$ is unimodular.

Theorem (MB-BB-DH-KS-JV-ARVM-MY, 2022+)

Let $w \in V$ have length k. The canonical triangulation of $\mathcal{O}(Q_w)$ admits exactly $k + 1$ flips.

4 ロ ▶ 4 冊

 298

Let ${\sf w}=\varepsilon L^{n-1}$, and $Q_{\sf w}=\mathop{\rm Irr}\nolimits_\wedge(\hat P({\sf w}))$. The flip graph of triangulations of $\mathcal{O}(Q_{w})$ is the Cayley graph of the symmetric group \mathfrak{S}_{n+1} with the simple transpositions as the generating set.

 299

メロメメ 倒す メミメメミメ

Definition

Given a ladder \mathcal{L}^i , define $\tau_i \in \mathfrak{S}_{|\mathcal{V}_0|}$ to be the permutation of \mathcal{V}_0 such that for $v \in V_0$,

$$
\tau_i(v) = \begin{cases} x_{j-1}, & \text{if } v = x_j \text{ and } j \in [s] \text{ is even,} \\ x_{j+1}, & \text{if } v = x_j \text{ and } j \in [s] \text{ is odd,} \\ v, & \text{otherwise.} \end{cases}
$$

4 D F

 298

Definition

Given a ladder \mathcal{L}^i , define $\tau_i \in \mathfrak{S}_{|\mathcal{V}_0|}$ to be the permutation of \mathcal{V}_0 such that for $v \in V_0$,

$$
\tau_i(v) = \begin{cases} x_{j-1}, & \text{if } v = x_j \text{ and } j \in [s] \text{ is even,} \\ x_{j+1}, & \text{if } v = x_j \text{ and } j \in [s] \text{ is odd,} \\ v, & \text{otherwise.} \end{cases}
$$

x_0	x_1	x_2	x_3	L' in \widehat{P} containing boxes with labels W_p, \ldots, W_q , where																	
x_3	x_2	x_3	x_4	labels W_p, \ldots, W_q , where																	
x_{s-1}	x_{s-3}	x_{s-4}	x_{s-2}	right	x_{s-4}																
x_{s-1}	x_{s-3}	x_{s-4}	x_{s-2}	right	represents the case where																
x_{s-1}	x_{s-2}	x_{s-4}	x_{s-3}	x_{s-3}	x_{s-1}	x_{s-1}	x_{s-2}														
x_{s-1}	x_{s-2}	x_{s-4}	x_{s-3}	x_{s-3}	x_{s-1}	x_{s-3}	x_{s-1}	<math< td=""></math<>													

 299

メロメメ 倒す メミメメミメ

Definition

Let $\mathfrak{T}(\mathsf{w})$ denote the subgroup of $\mathfrak{S}_{|V_0|}$ generated by the set of the τ_i 's. We call $\mathfrak{T}(w)$ the twist group of $\widehat{P}(w)$. Elements of $\mathfrak{T}(w)$ are called twists and the elements τ_i are called *elementary twists*.

4 0 8

 299

メロメメ 倒す メミメメミメ

Let $w \in V$, $Q_w = \text{Irr}_{\wedge}(\widehat{P}(w))$, and let $\mathcal T$ and $\tau(\mathcal T)$ be two triangulations of $\mathcal{O}(\mathsf{Q}_\mathsf{w})$ where τ is a twist. If $\mathcal{T} = \mathcal{T}_Z^+$ Z^+_Z can be flipped at circuit Z and $\tau(\mathcal{T}^+_{\mathcal{Z}}$ $(\mathcal{T}_Z^+) = \tau (\mathcal{T}_Z^+)$ $(\frac{1}{z})^+_{\tau(1)}$ $^{+}_{\tau(Z)}$, then $\tau(\mathcal{T}^{+}_{Z})$ $(\tau_Z^+)_{\tau(Z)}^- = \tau(\mathcal{T}_Z^-)$ $\binom{2}{Z}$). In other words, the following diagram commutes.

つひい

Let $w \in V$, $Q_w = \text{Irr}_{\wedge}(\widehat{P}(w))$, and let $\mathcal T$ and $\tau(\mathcal T)$ be two triangulations of $\mathcal{O}(\mathsf{Q}_\mathsf{w})$ where τ is a twist. If $\mathcal{T} = \mathcal{T}_Z^+$ Z^+_Z can be flipped at circuit Z and $\tau(\mathcal{T}^+_{\mathcal{Z}}$ $(\mathcal{T}_Z^+) = \tau (\mathcal{T}_Z^+)$ $(\frac{1}{z})^+_{\tau(1)}$ $^{+}_{\tau(Z)}$, then $\tau(\mathcal{T}^{+}_{Z})$ $(\tau_Z^+)_{\tau(Z)}^- = \tau(\mathcal{T}_Z^-)$ $\binom{2}{Z}$). In other words, the following diagram commutes.

Corollary (MB-BB-DH-KS-JV-ARVM-MY, 2022+)

Let $w \in V$, $Q_w = \text{Irr}_{\wedge}(\widehat{P}(w))$, and $\mathcal T \& \tau(\mathcal T)$ be two triangulations of $\mathcal{O}(Q_w)$. Then $\mathcal T$ and $\tau(\mathcal T)$ admit the same num[be](#page-64-0)r [o](#page-66-0)[f](#page-62-0) [fl](#page-63-0)[i](#page-65-0)[p](#page-66-0)[s.](#page-0-0)

 299

メロメメ 倒す メミメメミメ

Let w \in V and $Q_w = \text{Irr}_{\wedge}(\widehat{P}(w))$. The canonical triangulation \mathcal{T}_w of $\mathcal{O}(Q_w)$ is a regular triangulation, and for any twist τ , $\tau(\mathcal{T}_w)$ is also a regular triangulation.

Let w \in V and $Q_w = \text{Irr}_{\wedge}(\widehat{P}(w))$. The canonical triangulation \mathcal{T}_w of $\mathcal{O}(Q_w)$ is a regular triangulation, and for any twist τ , $\tau(\mathcal{T}_w)$ is also a regular triangulation.

Proof Idea:

Let $w \in V$ and $Q_w = \text{Irr}_{\wedge}(\widehat{P}(w))$. The canonical triangulation \mathcal{T}_w of $\mathcal{O}(Q_w)$ is a regular triangulation, and for any twist τ , $\tau(\mathcal{T}_w)$ is also a regular triangulation.

Proof Idea:

• Haase diagram of Q_w is strongly planar, by work of Mészáros, Morales, and Striker, $\mathcal{O}(Q_{\sf w})$ is int. $\,$ equiv. $\,$ to a flow polytope $\mathcal{F}_{G_Q}.$

Let $w \in V$ and $Q_w = \text{Irr}_{\wedge}(\widehat{P}(w))$. The canonical triangulation \mathcal{T}_w of $\mathcal{O}(Q_w)$ is a regular triangulation, and for any twist τ , $\tau(\mathcal{T}_w)$ is also a regular triangulation.

Proof Idea:

- Haase diagram of Q_w is strongly planar, by work of Mészáros, Morales, and Striker, $\mathcal{O}(Q_{\sf w})$ is int. $\,$ equiv. $\,$ to a flow polytope $\mathcal{F}_{G_Q}.$
- The canonical triangulation of $\mathcal{O}(Q_{w})$ maps to Danilov-Karzonov-Koshevoy triangulations of $\mathcal{F}_{G_Q}.$

つへへ

Let $w \in V$ and $Q_w = \text{Irr}_{\wedge}(\widehat{P}(w))$. The canonical triangulation \mathcal{T}_w of $\mathcal{O}(Q_w)$ is a regular triangulation, and for any twist τ , $\tau(\mathcal{T}_w)$ is also a regular triangulation.

Proof Idea:

- Haase diagram of Q_w is strongly planar, by work of Mészáros, Morales, and Striker, $\mathcal{O}(Q_{\sf w})$ is int. $\,$ equiv. $\,$ to a flow polytope $\mathcal{F}_{G_Q}.$
- The canonical triangulation of $\mathcal{O}(Q_{w})$ maps to Danilov-Karzonov-Koshevoy triangulations of $\mathcal{F}_{G_Q}.$
- DKK triangulations are regular \rightarrow canonical triangulation of $\mathcal{O}(Q_{w})$ are regular.

つへへ
Theorem (MB-BB-DH-KS-JV-ARVM-MY, 2022+)

Let $w \in V$ and $Q_w = \text{Irr}_{\wedge}(\widehat{P}(w))$. The canonical triangulation \mathcal{T}_w of $\mathcal{O}(Q_w)$ is a regular triangulation, and for any twist τ , $\tau(\mathcal{T}_w)$ is also a regular triangulation.

Proof Idea:

- Haase diagram of Q_w is strongly planar, by work of Mészáros, Morales, and Striker, $\mathcal{O}(Q_{\sf w})$ is int. $\,$ equiv. $\,$ to a flow polytope $\mathcal{F}_{G_Q}.$
- The canonical triangulation of $\mathcal{O}(Q_{w})$ maps to Danilov-Karzonov-Koshevoy triangulations of $\mathcal{F}_{G_Q}.$
- DKK triangulations are regular \rightarrow canonical triangulation of $\mathcal{O}(Q_{\rm w})$ are regular.
- The twist group $\mathfrak{T}(w)$ acts on the canonical triangulation of $\mathcal{O}(Q_w)$.
- Any twist τ , $\tau(\mathcal{T}_{\mathsf{w}})$ corresponds to a framed triangulation of $\mathcal{F}_{\mathsf{G}_{\mathsf{Q}_{\mathsf{w}}}}$, by DKK we know are regular. QQQ

Conjectures

Andrés R. Vindas Meléndez **Andrés R. Vindas Meléndez Caracter Caracter** [Triangulations](#page-0-0) 22-July-2022 21 / 22

B J. 299

イロト イ御 トイミトイ

(i) For $w \in V$, the flip graph of regular triangulations for $\mathcal{O}(Q_w)$ is k -regular, where k is the dimension of the secondary polytope of $\mathcal{O}(Q_{\rm w})$.

4 D F

 Ω

- (i) For $w \in V$, the flip graph of regular triangulations for $\mathcal{O}(Q_w)$ is k -regular, where k is the dimension of the secondary polytope of $\mathcal{O}(Q_{\rm w})$.
- (ii) If $w \in V$, all triangulations of $\mathcal{O}(Q_w)$ are regular.

 Ω

- (i) For $w \in V$, the flip graph of regular triangulations for $\mathcal{O}(Q_w)$ is k -regular, where k is the dimension of the secondary polytope of $\mathcal{O}(Q_{\rm w})$.
- (ii) If $w \in V$, all triangulations of $\mathcal{O}(Q_w)$ are regular.
- (iii) The number of regular triangulations of $\mathcal{O}(S_n)$ is $2^{n+1} \cdot \text{Cat}(2n+1)$.

 200

- (i) For $w \in V$, the flip graph of regular triangulations for $\mathcal{O}(Q_w)$ is k -regular, where k is the dimension of the secondary polytope of $\mathcal{O}(Q_{\rm w})$.
- (ii) If $w \in V$, all triangulations of $\mathcal{O}(Q_w)$ are regular.
- (iii) The number of regular triangulations of $\mathcal{O}(S_n)$ is $2^{n+1} \cdot \text{Cat}(2n+1)$.

 200

¡Gracias!

 \leftarrow \Box \rightarrow

 299