Triangulations, Order Polytopes, and Generalized Snake Posets

Andrés R. Vindas Meléndez (UC Berkeley)

> FPSAC 22-July-2022

Andrés R. Vindas Meléndez

Triangulations

22-July-2022 1 / 22

Matias von Bell (Inst. of Geom., TU Graz) (

Ben Braun (Univ. of Kentucky)

Derek Hanely (Penn State Berend)

Khrystyna Serhiyenko (Univ. of Kentucky)

Julie Vega (Maret School)

Andrés R. Vindas Meléndez (UC Berkeley)

Martha Yip (Univ. of Kentucky)

Order Polytopes

Andrés R. Vindas Meléndez

メロト メポト メヨト メヨト

Let P be a partially ordered set on the set of elements $[d] := \{1, \ldots, d\}$.

→ ∃ >

Let P be a partially ordered set on the set of elements $[d] := \{1, \ldots, d\}$.

The order polytope is defined as

$$\mathcal{O}(P) = \left\{ \mathsf{x} = (x_1, \dots, x_d) \in [0, 1]^d : x_i \leq x_j \text{ for } i <_P j \right\}.$$

< ∃ ►

Andrés R. Vindas Meléndez

イロト イヨト イヨト イ

Order Polytopes: An Example

Let P be the diamond poset

Order Polytopes: An Example

Let P be the diamond poset

The six upper order ideals of P are

Andrés R. Vindas Meléndez

イロト イヨト イヨト イ

Order Polytopes: An Example

Then $\mathcal{O}(P) = \{(x_1, x_2, x_3, x_4) \in [0, 1]^4 : x_4 \le x_2 \le x_1 \text{ and } x_4 \le x_3 \le x_1\}.$

- ∢ ≣ ▶

Image: Image:

Order Polytopes: An Example

Then $\mathcal{O}(P) = \{(x_1, x_2, x_3, x_4) \in [0, 1]^4 : x_4 \le x_2 \le x_1 \text{ and } x_4 \le x_3 \le x_1\}.$ From the upper order ideals of P,

we get that $\mathcal{O}(P)$ is the convex hull of the points (0,0,0,0), (1,0,0,0), (1,1,0,0), (1,0,1,0), (1,1,1,0) and (1,1,1,1).

Andrés R. Vindas Meléndez

Triangulations

• The dimension of $\mathcal{O}(P)$ is the number of elements of P.

A D > A A > A > A

- The dimension of $\mathcal{O}(P)$ is the number of elements of P.
- The vertices of $\mathcal{O}(P)$ correspond to the filters of P, i.e., the upper order ideals.

- The dimension of $\mathcal{O}(P)$ is the number of elements of P.
- The vertices of $\mathcal{O}(P)$ correspond to the filters of P, i.e., the upper order ideals.
- Volume of $\mathcal{O}(P)$ is the number of linear extensions of P.

Andrés R. Vindas Meléndez

イロト イヨト イヨト イ

Definition

For $n \in \mathbb{Z}_{\geq 0}$, a generalized snake word is a word of the form $w = w_0 w_1 \cdots w_n$ where $w_0 = \varepsilon$ is the empty letter and w_i is in the alphabet $\{L, R\}$ for i = 1, ..., n. The *length* of the word is *n*, which is the number of letters in $\{L, R\}$.

Definition

For $n \in \mathbb{Z}_{\geq 0}$, a generalized snake word is a word of the form $w = w_0 w_1 \cdots w_n$ where $w_0 = \varepsilon$ is the empty letter and w_i is in the alphabet $\{L, R\}$ for i = 1, ..., n. The length of the word is n, which is the number of letters in $\{L, R\}$.

Definition

Given a generalized snake word w, the generalized snake poset P(w) is defined recursively.

Definition

For $n \in \mathbb{Z}_{\geq 0}$, a generalized snake word is a word of the form $w = w_0 w_1 \cdots w_n$ where $w_0 = \varepsilon$ is the empty letter and w_i is in the alphabet $\{L, R\}$ for i = 1, ..., n. The *length* of the word is *n*, which is the number of letters in $\{L, R\}$.

Definition

Given a generalized snake word w, the generalized snake poset P(w) is defined recursively.

The snake poset $S_5 = P(\varepsilon LRLRL)$ and the ladder poset $\mathcal{L}_5 = P(\varepsilon LLLLL)$.

Theorem (MB-BB-DH-KS-JV-ARVM-MY, 2022+)

For $n \ge 0$, let $w = w_0 w_1 \cdots w_n$ be a generalized snake word. If $k \ge 0$ is the largest index such that $w_k \ne w_n$, then the normalized volume v_n of $\mathcal{O}(P(w))$ is given recursively by

$$v_n = \operatorname{Cat}(n-k+1)v_k + \left(\operatorname{Cat}(n-k+2) - 2 \cdot \operatorname{Cat}(n-k+1)\right)v_{k-1}$$

with $v_{-1} = 1$ and $v_0 = 2$.

Corollary (MB-BB-DH-KS-JV-ARVM-MY, 2022+)

The normalized volume of $\mathcal{O}(S_n)$ with $n \ge 0$ is given recursively by

$$v_n = 2v_{n-1} + v_{n-2},$$

with $v_{-1} = 1$ and $v_0 = 2$. These are the Pell numbers.

Corollary (MB-BB-DH-KS-JV-ARVM-MY, 2022+)

The normalized volume of $\mathcal{O}(S_n)$ with $n \ge 0$ is given recursively by

$$v_n = 2v_{n-1} + v_{n-2},$$

with $v_{-1} = 1$ and $v_0 = 2$. These are the Pell numbers.

Corollary (Benedetti et al. 2019, Mészáros–Morales 2019)

The normalized volume of $\mathcal{O}(\mathcal{L}_n)$ with $n \ge 0$ is given by

 $v_n = \operatorname{Cat}(n+2).$

Corollary (MB-BB-DH-KS-JV-ARVM-MY, 2022+)

The normalized volume of $\mathcal{O}(S_n)$ with $n \ge 0$ is given recursively by

$$v_n = 2v_{n-1} + v_{n-2},$$

with $v_{-1} = 1$ and $v_0 = 2$. These are the Pell numbers.

Corollary (Benedetti et al. 2019, Mészáros–Morales 2019)

The normalized volume of $\mathcal{O}(\mathcal{L}_n)$ with $n \ge 0$ is given by

 $v_n = \operatorname{Cat}(n+2).$

Theorem (MB-BB-DH-KS-JV-ARVM-MY, 2022+)

For any generalized snake word $w = w_0 w_1 \cdots w_n$ of length n,

$$\operatorname{vol} \mathcal{O}(S_n) \leq \operatorname{vol} \mathcal{O}(P(w)) \leq \operatorname{vol} \mathcal{O}(\mathcal{L}_n).$$

Andrés R. Vindas Meléndez

Andrés R. Vindas Meléndez

3

・ロト ・ 日 ト ・ ヨ ト ・

Consider a polytope $\mathcal{P} \subseteq \mathbb{R}^d$. A triangulation \mathcal{T} of \mathcal{P} is a subdivison of \mathcal{P} into *d*-simplices.

Consider a polytope $\mathcal{P} \subseteq \mathbb{R}^d$. A triangulation \mathcal{T} of \mathcal{P} is a subdivison of \mathcal{P} into *d*-simplices.

• A triangulation is unimodular if every simplex has normalized volume one.

Consider a polytope $\mathcal{P} \subseteq \mathbb{R}^d$. A triangulation \mathcal{T} of \mathcal{P} is a subdivison of \mathcal{P} into *d*-simplices.

- A triangulation is unimodular if every simplex has normalized volume one.
- A triangulation of $\mathcal{P} \subseteq \mathbb{R}^d$ is regular if it can be obtained by projecting the lower envelope of a lifting of \mathcal{P} from \mathbb{R}^{d+1} .

Consider a polytope $\mathcal{P} \subseteq \mathbb{R}^d$. A triangulation \mathcal{T} of \mathcal{P} is a subdivison of \mathcal{P} into *d*-simplices.

- A triangulation is unimodular if every simplex has normalized volume one.
- A triangulation of $\mathcal{P} \subseteq \mathbb{R}^d$ is regular if it can be obtained by projecting the lower envelope of a lifting of \mathcal{P} from \mathbb{R}^{d+1} .

Figure: From "Existence of Unimodular Triangulations" by Haase et al.

Figure: From "Triangulations" by De Loera et al.

(日)

Define a hyperplane $\mathcal{H}_{i,j} = \{ x \in \mathbb{R}^d : x_i = x_j \}$ for $1 \le i < j \le d$.

Define a hyperplane $\mathcal{H}_{i,j} = \{x \in \mathbb{R}^d : x_i = x_j\}$ for $1 \le i < j \le d$. The set of all such hyperplanes induces a triangulation \mathcal{T} of $\mathcal{O}(P)$ known as the *canonical triangulation*, which has the following three fundamental properties:

Define a hyperplane $\mathcal{H}_{i,j} = \{x \in \mathbb{R}^d : x_i = x_j\}$ for $1 \le i < j \le d$. The set of all such hyperplanes induces a triangulation \mathcal{T} of $\mathcal{O}(P)$ known as the *canonical triangulation*, which has the following three fundamental properties:

• \mathcal{T} is unimodular,

Define a hyperplane $\mathcal{H}_{i,j} = \{x \in \mathbb{R}^d : x_i = x_j\}$ for $1 \le i < j \le d$. The set of all such hyperplanes induces a triangulation \mathcal{T} of $\mathcal{O}(P)$ known as the *canonical triangulation*, which has the following three fundamental properties:

- \mathcal{T} is unimodular,
- the maximal simplices are in bijection with the linear extensions of P, so the normalized volume of the order polytope is

 $vol(\mathcal{O}(P)) = #$ of linear extensions of P, and

Define a hyperplane $\mathcal{H}_{i,j} = \{x \in \mathbb{R}^d : x_i = x_j\}$ for $1 \le i < j \le d$. The set of all such hyperplanes induces a triangulation \mathcal{T} of $\mathcal{O}(P)$ known as the *canonical triangulation*, which has the following three fundamental properties:

- $\bigcirc \mathcal{T}$ is unimodular,
- the maximal simplices are in bijection with the linear extensions of P, so the normalized volume of the order polytope is

$$vol(\mathcal{O}(P)) = #$$
 of linear extensions of P , and

③ the simplex corresponding to a linear extension (a_1, \ldots, a_d) of P is

$$\sigma_{a_1,\ldots,a_d} = \left\{ \mathsf{x} \in [0,1]^d : x_{a_1} \le x_{a_2} \le \cdots \le x_{a_d} \right\},\,$$

with vertex set $\{0, e_{a_d}, e_{a_{d-1}} + e_{a_d}, \dots, e_{a_1} + \dots + e_{a_d} = 1\}$.

(日)
Image: Image:

• Graded posets (Reiner and Welker 2005)

- Graded posets (Reiner and Welker 2005)
- Non-unimodular triangulations related to graph-associahedra (Féray and Reiner 2012)

- Graded posets (Reiner and Welker 2005)
- Non-unimodular triangulations related to graph-associahedra (Féray and Reiner 2012)
- Product of chains (Santos, Stump, and Welker 2017)

- Graded posets (Reiner and Welker 2005)
- Non-unimodular triangulations related to graph-associahedra (Féray and Reiner 2012)
- Product of chains (Santos, Stump, and Welker 2017)
- s-Lecture hall order polytopes (Bränden Solus 2019)

- Graded posets (Reiner and Welker 2005)
- Non-unimodular triangulations related to graph-associahedra (Féray and Reiner 2012)
- Product of chains (Santos, Stump, and Welker 2017)
- s-Lecture hall order polytopes (Bränden Solus 2019)
- disjoint union of chains

Image: A mathematical states of the state

The flip graph of a polytope *P* is a graph where each triangulation corresponds to a vertex in the graph, and a flip from a triangulation to another corresponds to an edge.

- The flip graph of a polytope *P* is a graph where each triangulation corresponds to a vertex in the graph, and a flip from a triangulation to another corresponds to an edge.
- The secondary polytope of P is a polytope of dimension

 n d 1 (n = number of vertices of P and d = dim(P))
 whose vertices correspond to regular triangulations of P. The 1-skeleton of the secondary polytope is the subgraph of the flip graph induced by the regular triangulations of P.

- The flip graph of a polytope *P* is a graph where each triangulation corresponds to a vertex in the graph, and a flip from a triangulation to another corresponds to an edge.
- The secondary polytope of P is a polytope of dimension

 n d 1 (n = number of
 vertices of P and d = dim(P))
 whose vertices correspond to
 regular triangulations of P. The
 1-skeleton of the secondary
 polytope is the subgraph of the
 flip graph induced by the regular
 triangulations of P.

Image: Image:

Image: Image:

• Define $\hat{P}(w)$ to be the generalized snake poset P(w) with $\hat{0}$ and $\hat{1}$ adjoined.

- Define $\hat{P}(w)$ to be the generalized snake poset P(w) with $\hat{0}$ and $\hat{1}$ adjoined.
- Let $Q_{\sf w} = \operatorname{Irr}_{\wedge}(\hat{P})$ denote the poset of meet-irreducibles of \hat{P} .

- Define $\hat{P}(w)$ to be the generalized snake poset P(w) with $\hat{0}$ and $\hat{1}$ adjoined.
- Let $Q_{\mathsf{w}} = \operatorname{Irr}_{\wedge}(\hat{P})$ denote the poset of meet-irreducibles of \hat{P} .
- By the fundamental theorem of finite distributive lattices, $\hat{P} \cong J(Q_w)$, where $J(Q_w)$ is the lattice of filters of Q_w , ordered by reverse inclusion.

- Define $\hat{P}(w)$ to be the generalized snake poset P(w) with $\hat{0}$ and $\hat{1}$ adjoined.
- Let $Q_{\sf w} = \operatorname{Irr}_{\wedge}(\hat{P})$ denote the poset of meet-irreducibles of \hat{P} .
- By the fundamental theorem of finite distributive lattices, $\hat{P} \cong J(Q_w)$, where $J(Q_w)$ is the lattice of filters of Q_w , ordered by reverse inclusion.

Figure: The lattice $\hat{P}(w)$ for $w = \varepsilon L^3 R^2 L^4 R^5 L^2$ (left) and its poset of meet-irreducibles $Q_w = \text{Irr}_{\wedge}(\hat{P})$.

Image: Image:

Let ${\mathcal V}$ denote the subset of words which do not contain the substring LRL or RLR.

Let \mathcal{V} denote the subset of words which do not contain the substring *LRL* or *RLR*.

Theorem (MB-BB-DH-KS-JV-ARVM-MY, 2022+)

For $w \in \mathcal{V}$, every vertex of the secondary polytope of $\mathcal{O}(Q_w)$ is a unimodular triangulation. Thus, every triangulation of $\mathcal{O}(Q_w)$ is unimodular.

Let \mathcal{V} denote the subset of words which do not contain the substring *LRL* or *RLR*.

Theorem (MB-BB-DH-KS-JV-ARVM-MY, 2022+)

For $w \in \mathcal{V}$, every vertex of the secondary polytope of $\mathcal{O}(Q_w)$ is a unimodular triangulation. Thus, every triangulation of $\mathcal{O}(Q_w)$ is unimodular.

Theorem (MB-BB-DH-KS-JV-ARVM-MY, 2022+)

Let $w\in \mathcal{V}$ have length k. The canonical triangulation of $\mathcal{O}(Q_w)$ admits exactly k+1 flips.

▶ ▲ 臣 ▶ ▲

Image: Image:

Let $w = \varepsilon L^{n-1}$, and $Q_w = \operatorname{Irr}_{\wedge}(\hat{P}(w))$. The flip graph of triangulations of $\mathcal{O}(Q_w)$ is the Cayley graph of the symmetric group \mathfrak{S}_{n+1} with the simple transpositions as the generating set.

・ロト ・ 日 ト ・ 日 ト ・ 日 ト

Definition

Given a ladder \mathcal{L}^i , define $\tau_i \in \mathfrak{S}_{|V_0|}$ to be the permutation of V_0 such that for $v \in V_0$,

$$\tau_i(v) = \begin{cases} x_{j-1}, & \text{if } v = x_j \text{ and } j \in [s] \text{ is even,} \\ x_{j+1}, & \text{if } v = x_j \text{ and } j \in [s] \text{ is odd,} \\ v, & \text{otherwise.} \end{cases}$$

Definition

Given a ladder \mathcal{L}^i , define $\tau_i \in \mathfrak{S}_{|V_0|}$ to be the permutation of V_0 such that for $v \in V_0$,

$$\tau_i(v) = \begin{cases} x_{j-1}, & \text{if } v = x_j \text{ and } j \in [s] \text{ is even,} \\ x_{j+1}, & \text{if } v = x_j \text{ and } j \in [s] \text{ is odd,} \\ v, & \text{otherwise.} \end{cases}$$

・ロト ・ 日 ト ・ 日 ト ・ 日 ト

Definition

Let $\mathfrak{T}(w)$ denote the subgroup of $\mathfrak{S}_{|V_0|}$ generated by the set of the τ_i 's. We call $\mathfrak{T}(w)$ the twist group of $\widehat{P}(w)$. Elements of $\mathfrak{T}(w)$ are called *twists* and the elements τ_i are called *elementary twists*.

Andrés R. Vindas Meléndez

・ロト ・ 日 ト ・ 日 ト ・ 日 ト

Let $w \in \mathcal{V}$, $Q_w = \operatorname{Irr}_{\wedge}(\widehat{P}(w))$, and let \mathcal{T} and $\tau(\mathcal{T})$ be two triangulations of $\mathcal{O}(Q_w)$ where τ is a twist. If $\mathcal{T} = \mathcal{T}_Z^+$ can be flipped at circuit Z and $\tau(\mathcal{T}_Z^+) = \tau(\mathcal{T}_Z^+)_{\tau(Z)}^+$, then $\tau(\mathcal{T}_Z^+)_{\tau(Z)}^- = \tau(\mathcal{T}_Z^-)$. In other words, the following diagram commutes.

Let $w \in \mathcal{V}$, $Q_w = \operatorname{Irr}_{\wedge}(\widehat{P}(w))$, and let \mathcal{T} and $\tau(\mathcal{T})$ be two triangulations of $\mathcal{O}(Q_w)$ where τ is a twist. If $\mathcal{T} = \mathcal{T}_Z^+$ can be flipped at circuit Z and $\tau(\mathcal{T}_Z^+) = \tau(\mathcal{T}_Z^+)_{\tau(Z)}^+$, then $\tau(\mathcal{T}_Z^+)_{\tau(Z)}^- = \tau(\mathcal{T}_Z^-)$. In other words, the following diagram commutes.

Corollary (MB-BB-DH-KS-JV-ARVM-MY, 2022+)

Let $w \in \mathcal{V}$, $Q_w = \operatorname{Irr}_{\wedge}(\widehat{P}(w))$, and $\mathcal{T} \& \tau(\mathcal{T})$ be two triangulations of $\mathcal{O}(Q_w)$. Then \mathcal{T} and $\tau(\mathcal{T})$ admit the same number of flips.

Andrés R. Vindas Meléndez

・ロト ・ 日 ト ・ 日 ト ・ 日 ト

Let $w \in \mathcal{V}$ and $Q_w = \operatorname{Irr}_{\wedge}(\widehat{P}(w))$. The canonical triangulation \mathcal{T}_w of $\mathcal{O}(Q_w)$ is a regular triangulation, and for any twist τ , $\tau(\mathcal{T}_w)$ is also a regular triangulation.

Let $w \in \mathcal{V}$ and $Q_w = \operatorname{Irr}_{\wedge}(\widehat{P}(w))$. The canonical triangulation \mathcal{T}_w of $\mathcal{O}(Q_w)$ is a regular triangulation, and for any twist τ , $\tau(\mathcal{T}_w)$ is also a regular triangulation.

Proof Idea:

Let $w \in \mathcal{V}$ and $Q_w = \operatorname{Irr}_{\wedge}(\widehat{P}(w))$. The canonical triangulation \mathcal{T}_w of $\mathcal{O}(Q_w)$ is a regular triangulation, and for any twist τ , $\tau(\mathcal{T}_w)$ is also a regular triangulation.

Proof Idea:

• Haase diagram of Q_w is strongly planar, by work of Mészáros, Morales, and Striker, $\mathcal{O}(Q_w)$ is int. equiv. to a flow polytope \mathcal{F}_{G_Q} .

Let $w \in \mathcal{V}$ and $Q_w = \operatorname{Irr}_{\wedge}(\widehat{P}(w))$. The canonical triangulation \mathcal{T}_w of $\mathcal{O}(Q_w)$ is a regular triangulation, and for any twist τ , $\tau(\mathcal{T}_w)$ is also a regular triangulation.

Proof Idea:

- Haase diagram of Q_w is strongly planar, by work of Mészáros, Morales, and Striker, $\mathcal{O}(Q_w)$ is int. equiv. to a flow polytope \mathcal{F}_{G_Q} .
- The canonical triangulation of O(Q_w) maps to Danilov-Karzonov-Koshevoy triangulations of F_{G_Q}.

Let $w \in \mathcal{V}$ and $Q_w = \operatorname{Irr}_{\wedge}(\widehat{P}(w))$. The canonical triangulation \mathcal{T}_w of $\mathcal{O}(Q_w)$ is a regular triangulation, and for any twist τ , $\tau(\mathcal{T}_w)$ is also a regular triangulation.

Proof Idea:

- Haase diagram of Q_w is strongly planar, by work of Mészáros, Morales, and Striker, O(Q_w) is int. equiv. to a flow polytope F_{G_Q}.
- The canonical triangulation of $\mathcal{O}(Q_w)$ maps to Danilov-Karzonov-Koshevoy triangulations of \mathcal{F}_{G_Q} .
- DKK triangulations are regular \rightarrow canonical triangulation of $\mathcal{O}(Q_w)$ are regular.
Theorem (MB-BB-DH-KS-JV-ARVM-MY, 2022+)

Let $w \in \mathcal{V}$ and $Q_w = \operatorname{Irr}_{\wedge}(\widehat{P}(w))$. The canonical triangulation \mathcal{T}_w of $\mathcal{O}(Q_w)$ is a regular triangulation, and for any twist τ , $\tau(\mathcal{T}_w)$ is also a regular triangulation.

Proof Idea:

- Haase diagram of Q_w is strongly planar, by work of Mészáros, Morales, and Striker, O(Q_w) is int. equiv. to a flow polytope F_{G_Q}.
- The canonical triangulation of $\mathcal{O}(Q_w)$ maps to Danilov-Karzonov-Koshevoy triangulations of \mathcal{F}_{G_Q} .
- DKK triangulations are regular \rightarrow canonical triangulation of $\mathcal{O}(Q_w)$ are regular.
- The twist group $\mathfrak{T}(w)$ acts on the canonical triangulation of $\mathcal{O}(Q_w)$.
- Any twist τ , $\tau(\mathcal{T}_w)$ corresponds to a framed triangulation of $\mathcal{F}_{G_{Q_w}}$, by DKK we know are regular.

Andrés R. Vindas Meléndez

Conjectures

Andrés R. Vindas Meléndez

(i) For w ∈ V, the flip graph of regular triangulations for O(Q_w) is k-regular, where k is the dimension of the secondary polytope of O(Q_w).

- (i) For w ∈ V, the flip graph of regular triangulations for O(Q_w) is k-regular, where k is the dimension of the secondary polytope of O(Q_w).
- (ii) If $w \in \mathcal{V}$, all triangulations of $\mathcal{O}(Q_w)$ are regular.

- (i) For w ∈ V, the flip graph of regular triangulations for O(Q_w) is k-regular, where k is the dimension of the secondary polytope of O(Q_w).
- (ii) If $w \in \mathcal{V}$, all triangulations of $\mathcal{O}(Q_w)$ are regular.
- (iii) The number of regular triangulations of $\mathcal{O}(S_n)$ is $2^{n+1} \cdot \operatorname{Cat}(2n+1)$.

- (i) For w ∈ V, the flip graph of regular triangulations for O(Q_w) is k-regular, where k is the dimension of the secondary polytope of O(Q_w).
- (ii) If $w \in \mathcal{V}$, all triangulations of $\mathcal{O}(Q_w)$ are regular.
- (iii) The number of regular triangulations of $\mathcal{O}(S_n)$ is $2^{n+1} \cdot \operatorname{Cat}(2n+1)$.

¡Gracias!