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The descent set of a permutation m = (71,...,7,) in the
symmetric group G, is

Des(m) :={1<i<n—-1:m>mu1}C{L,2,...,n—1}.

The cyclic descent set is defined, with the convention 7,1 := 7y,
by

cDes(m) :={1<i<n:m>my1} C{1,2,...,n—1,n},
with the convention w41 (= 7.

Introduced by Klyachko ['74] and Cellini ['95, '98].
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The descent set of a standard Young tableau T is

Des(T):={i: i+ 1isin a lower row than i}.

Example
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Des(T) = {2,4}.
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Descents and cyclic descents of SYT

The descent set of a standard Young tableau T is

Des(T):={i: i+ 1isin a lower row than i}.

Problems

Example
1[2]4]
T=[3]6] €SYT((3,2,1))
5]
Des(T) = {2,4}.
Problem 1:

Define a cyclic descent set for SYT of any shape A.
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Cyclic descents of permutations
Example

15423 — 31542 — 23154 — 42315 — 54231

Des = {2,3} {1,3,4} {2,4} {1,3} {1,2,4}

Des = {2,3,5}  {3,4,1}  {4,52} {51,3}  {1,2,4)

Observation The cyclic descent map cDes : S, — 2l satisfies:
forall m € S,:

cDes(mr)N[n—1] = Des(n),
cDes(p(m)) = cDes(w)+ 1 (mod n)

where the rotation p([m1,...,7s]) := [mn, 71, ..., Th-1].
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SYT of rectangular shapes

Theorem (Rhoades '10)

For r|n, let X\ = (r"/") = (r,...,r) - n be a rectangular shape.
Then there exists a cyclic descent map cDes : SYT()\) — 2l s.t.
for all T € SYT(A):

cDes(T)N[n—1] = Des(T),
cDes(p(T)) = cDes(T))+1 (mod n)

where p is Schiitzenberger’s jeu-de-taquin promotion operator.



Cyclic descents CDE Main result Higher Lie characters Proof method Problems

SYT of rectangular shapes

Example A = (3,3) - 6.



Cyclic descents CDE Main result Higher Lie characters Proof method Problems

SYT of rectangular shapes

Example A = (3,3) - 6.

Jeu-de-taquin promotion:



Cyclic descents CDE Main result Higher Lie characters

SYT of rectangular shapes

Example A = (3,3) F 6.

Jeu-de-taquin promotion:
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Problems
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CDE

SYT of rectangular shapes

Example A = (3,3) F 6.

Jeu-de-taquin promotion:

1(3(4] [1[37a] [1[3]4] [1] [a 1741 [12]5
21516 " [2(5] | "12] |51 [2(3/5] "[2(3/5] [34]6
The orbits of p on SYT(A):
173(4] [1]2]5] [1]2]3 113[5] [1]2]a
2(516| [3/4]6| 4156 2(416| (3156




CDE

SYT of rectangular shapes

Example A = (3,3) F 6.

Jeu-de-taquin promotion:

1134 1134 1134 1 4 14 1125
2516 (2|5 | '[2] |5] '[213]5 " [2.3]5 |3
The orbits of p on SYT(A):
1134 1125 112|3 1135 1124
2|/5|6 3146 4156 2146 3/5|6

{1,4} {2,5} {3,6} {1,3,5} {2,4,6}
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CDE

Cyclic Descent Extension (CDE)
Definition (A-Reiner-Roichman)
Given a set 7 and map Des : T — 20=1] 5 cyclic extension of Des

is a pair of a map
cDes : T — 2l

and a bijection
p: T —T
satisfying the following axioms:
forall Tin T,
(extension) cDes(T)N[n— 1] = Des(T),
(equivariance) cDes(p(T)) =1+ cDes(T) (mod n),
(non-Escher) @ C cDes(T) C [n].

Examples
e T =35,, cDes = Cellini’s cyclic descent set, and p = cyclic
rotation.
o T =SYT(r"/"), cDes = Rhoades' cyclic descent set, and p =
promotion.
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A non-Escher property

“Ascending and Descending”, M. C. Escher
The paradox of cDes(7) = @ and cDes(7) = [n].
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Hook partitions have at most one part of size > 1.
Example

Theorem (Adin-Reiner-R '18)
The set SYT(A) has a cyclic descent extension <= X\ is non-hook.

e Proof is algebraic (involves Postnikov's toric Schur functions
and Gromov-Witten invariants).

e A constructive combinatorial proof was given by Brice Huang.
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Significance of CDE

e Combinatorial: Enumeration, twisted promotion.

e Algebraic: Cyclic descent algebras, cyclic QSF,
Postnikov's toric Schur functions, higher Lie characters.

e Geometric: Steinberg torus, Gromov-Witten invariants.
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Cyclic descent extension on conjugacy classes
Let C, € S, be a conjugacy class of cycle type .

Problem:

Which conjugacy classes C,, C S, carry a CDE 7

Example

Consider the conjugacy class of 4-cycles in S4
Cay = {2341,4123,4312,3421,2413,3142}.

Cellini's cDes sets are {3},{1},{1,2},{2,3},{2,4},{1,3}
Not a CDE (not closed under cyclic rotation). Letting

cDes(2341) = {3,4}, cDes(4123) = {4,1}, cDes(4312) = {1,2},

cDes(3421) = {2,3}, cDes(2413) = {2,4}, cDes(3142) = {1,3},

determines a CDE.
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Let C, C S, be a conjugacy class of cycle type .
The following are equivalent:

(i) The descent map Des on C,, has a cyclic extension (CDE).
(ii) w is not of the form (r®) for some square-free r.

The proof is algebraic (involves higher Lie characters).
Problem 3:

Problems
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Main Result
Cyclic descent extension on conjugacy classes

Theorem (Adin-Hegediis-R '20)

Let C, C S, be a conjugacy class of cycle type .
The following are equivalent:

(i) The descent map Des on C,, has a cyclic extension (CDE).
(ii) w is not of the form (r®) for some square-free r.

The proof is algebraic (involves higher Lie characters).

Problems

Problem 3:

Find a constructive combinatorial proof.
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where
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Gessel's fundamental quasi-symmetric function.
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Higher Lie characters

Let
Lu = Z Fn,Des(w)y
melCy
where
Fn,Des(fr) = Z Xip = Xiy
1< <-<in
n()>m(+1)=i;<ijj1

Gessel's fundamental quasi-symmetric function.

Let Z, be the centralizer of m € C,,.
There exists a 1-dim character w# of Z,, such that

ch(w" 13) = L.

The higher Lie character indexed by p - nis

W AS
Pt = w TZZ‘
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Classical Results
Theorem For every A n
[n/2]
Z <L(2k’1n72k)7 S)\> =1

k=0

Theorem For every At n

D (Lursa) = #SYT(N).

pkEn

Problems

Thrall's Problem ('42):

Give a closed formula / combinatorial interpretation
to the inner product

<Ll“ S)\> .
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Classical Results
Theorem For every A n
[n/2]
Z <L(2k’1n72k)7 S)\> =1

k=0

Theorem For every At n

D (Lursa) = #SYT(N).

pkEn

Problems

Thrall's Problem ('42):

Give a closed formula / combinatorial interpretation
to the inner product

<Ll“ S)\> .

KraskiewiczWeyman, DésarménienWachs, GesselReutenauer, Sundaram, Schocker, HershReiner, AhlbachSwanson...
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Hook multiplicities and CDE

A subset A C S, is Schur-positive if the associated
quasi-symmetric function

Q(A) = an,Des(a)v

acA

is symmetric and Schur-positive.

Problems
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Hook multiplicities and CDE

A subset A C S, is Schur-positive if the associated
quasi-symmetric function

Q(A) = Z fn,Des(a)a

acA

is symmetric and Schur-positive.

Lemma (AHR)

A Schur-positive set A C S, has a cyclic descent extension
<= the following two conditions hold:

(divisibility) the polynomial Z;(l) (Q(A), s(,,_k?lk)>xk

is divisible by 1 + x;
(non-negativity) the quotient has nonnegative coefficients.



Cyclic descents CDE Main result Higher Lie characters Proof method Problems
Divisibility
Lemma

For every S,-character ¢, the hook-multiplicity generating function

n—1

My(x) =Y (o, x" R )xk

k=0

is divisible by 1 + x if and only if the value of ¢ on an n-cycle is
zero: ¢(,) = 0.



Proof method
Divisibility
Lemma

For every S,-character ¢, the hook-multiplicity generating function

n—1

My(x) =Y (o, x" R )xk

k=0

is divisible by 1 + x if and only if the value of ¢ on an n-cycle is
zero: ¢(,) = 0.

Lemma
For A\t n

oy = {u(r), ifA = (r);

0, otherwise |

where p(r) is the Mébius function.
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Non-negativity - the case of distinct cycle lengths

Lemma (AHR)
Let A = (r°) U v be a partition of n, where v is a partition of

n — rs with no part equal to r. Then

n—1

Ma(x) =Y (La, Sn k)X = (14 )My (x) My ().
k=0
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Non-negativity - the case of distinct cycle lengths

Lemma (AHR)

Let A = (r®) U v be a partition of n, where v is a partition of
n — rs with no part equal to r. Then

n—1
Ma(x) =Y (La, Sn k)X = (14 )My (x) My ().
k=0

Corollary

For conjugacy classes Cy with distinct cycle lengths,
the hook multiplicities g.f. My(x) is divisible by 1 + x,
and the quotient has non-negative coefficients.
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Non-negativity - the n-cycle case

Denote
My = (L, S(n—k,14))-
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Non-negativity - the n-cycle case

Denote
mp )\ = <L)\as(n—k,1k)>‘

Lemma [Sundaram '94]

1 n/d
My_1 (n)F Mk (n) = (L(,,), exhn_k) = - Z M(d)(_l)k+k/d <k§d>'
d|(n,k)
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Non-negativity - the n-cycle case

Denote
mp )\ = <L>\a s(n—k,lk)>‘

Lemma [Sundaram '94]
1

n/d
My_1 (n)F Mk (n) = (L(,,), exhn_k) = - Z N(d)(_l)k+k/d <k§d>'
d|(n,k)

Theorem (AHR)

For every positive integer n the sequence

Mo (n)s M1,(n)s - -+ Mn—1,(n)

is unimodal.
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Non-negativity - the case of cycle type (r,...,r)
We have to prove that for every s > 1 and square-free r

L¢ysy, S xk
M(,s)(x) . ;< (rs)>=>(n k,l“)>

1+x = 1+x

has non-negative coefficients.
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Non-negativity - the case of cycle type (r,...,r)
We have to prove that for every s > 1 and square-free r

L,sy, S xk
/\/I(,s)(x) ;< (rs)>=>(n k,1’<)>

1+x = 1+x
has non-negative coefficients.

For a given r > 1 let

Er(X,y) = Z <L(rs), ekh,s_k>xky5.
s5,k>0
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Non-negativity - the case of cycle type (r,...,r)
We have to prove that for every s > 1 and square-free r

L,sy, S xk
/\/I(,s)(x) ;< (rs)>=>(n k,1’<)>

1+x = 1+x
has non-negative coefficients.

For a given r > 1 let

Er(X,y) = Z <L(rs), ekh,s_k>xky5.
s5,k>0

Observation
E(xy)—1 _ Sy M=) (x)

(14 x)? 14+ x

s>1
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1
Lemma [Sundaram '94]

fri = (L(r) ehr—k) :% > u(d)(—l)k”/"(/:éf/).

d|(r,k)



Proof method

Lemma [Sundaram '94]
— _1 p)ktk/d r/d
oo (b =7 dqu)M k/d)

Lemma (AHR)
For everys > 1 and k >0

1.
L e hrs _/+1)tj v) (( )J r,‘/>.
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where P, o(k) :={\F k: A\ <r,\| <s} and tj(7) - the
multiplicity of the part j in .
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In particular, for s =1 we obtain Sundaram’s formula.
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Open Problems

Problem 1:

Find an explicit combinatorial description of the cyclic descent
extension (CDE) for conjugacy classes of cycle type, which is not
equal to (r®) for some square free r.
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Conjecture 2:

For every partition A - n, the g.f.

n—1

Z<L/\7 s(n—k,lk)>Xk

k=0

is unimodal.
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Thank You!
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