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Ron Adin (Bar-Ilan), Pál Hegedüs (Renyi Inst.), Yuval Roichman (Bar-Ilan)

(1234)

(1432)(1423)

(1324)

∧

FPSAC 22, IISC Bangalore, July 2022



Cyclic descents CDE Main result Higher Lie characters Proof method Problems

Descents and cyclic descents of permutations

The descent set of a permutation π = (π1, . . . , πn) in the
symmetric group Sn is

Des(π) := {1 ≤ i ≤ n − 1 : πi > πi+1} ⊆ {1, 2, . . . , n − 1}.

The cyclic descent set is defined, with the convention πn+1 := π1,
by

cDes(π) := {1 ≤ i ≤ n : πi > πi+1} ⊆ {1, 2, . . . , n − 1, n},

with the convention πn+1 := π1.

Introduced by Klyachko [’74] and Cellini [’95, ’98].
Further studied by Fulman [’00], Petersen [’05, ’07], Dilks-Petersen-Stembridge [’09], Rhoades [’10],

Visontai-Williams [’13], Zhang [’14], Pechenik [’14], Aguiar-Petersen [’15], Elizalde-R [’17], Ahlbach-Swanson [’18],

Bloom-Elizalde-R [’20], Adin-Reiner-R [’20], Huang [’20], Bloom-Elizalde-R [’20], Zakeri [’21],

Adin-Gessel-Reiner-R [’21], Khachatryan [’22] and others ...
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Descents and cyclic descents of SYT

The descent set of a standard Young tableau T is

Des(T ) := {i : i + 1 is in a lower row than i}.

Example

T =
1 2 4
3 6
5

∈ SYT((3, 2, 1))

Des(T ) = {2, 4}.

Problem 1:

Define a cyclic descent set for SYT of any shape λ.
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Cyclic descents of permutations

Example

15423 −→ 31542 −→ 23154 −→ 42315 −→ 54231

Des = {2, 3} {1, 3, 4} {2, 4} {1, 3} {1, 2, 4}

cDes = {2, 3, 5} {3, 4, 1} {4, 5, 2} {5, 1, 3} {1, 2, 4}

Observation The cyclic descent map cDes : Sn → 2[n] satisfies:
for all π ∈ Sn:

cDes(π) ∩ [n − 1] = Des(π),

cDes(p(π)) = cDes(π) + 1 (mod n)

where the rotation p([π1, . . . , πn]) := [πn, π1, . . . , πn−1].
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SYT of rectangular shapes

Theorem (Rhoades ’10)

For r |n, let λ = (rn/r ) = (r , . . . , r) ` n be a rectangular shape.
Then there exists a cyclic descent map cDes : SYT(λ)→ 2[n] s.t.
for all T ∈ SYT(λ):

cDes(T ) ∩ [n − 1] = Des(T ),

cDes(p(T )) = cDes(T )) + 1 (mod n)

where p is Schützenberger’s jeu-de-taquin promotion operator.
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SYT of rectangular shapes

Example λ = (3, 3) ` 6.

Jeu-de-taquin promotion:

1 3 4
2 5 6

→ 1 3 4
2 5

→ 1 3 4
2 5

→ 1 4
2 3 5

→ 1 4
2 3 5

→ 1 2 5
3 4 6

The orbits of p on SYT(λ):

1 3 4
2 5 6

1 2 5
3 4 6

1 2 3
4 5 6

1 3 5
2 4 6

1 2 4
3 5 6

{1, 4} {2, 5} {3, 6} {1, 3, 5} {2, 4, 6}
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Cyclic Descent Extension (CDE)
Definition (A-Reiner-Roichman)
Given a set T and map Des : T → 2[n−1],

a cyclic extension of Des
is a pair of a map

cDes : T −→ 2[n]

and a bijection
p : T −→ T

satisfying the following axioms:
for all T in T ,

(extension) cDes(T ) ∩ [n − 1] = Des(T ),
(equivariance) cDes(p(T )) = 1 + cDes(T ) (mod n),

(non-Escher) ∅ ( cDes(T ) ( [n].

Examples
• T = Sn, cDes = Cellini’s cyclic descent set, and p = cyclic

rotation.
• T = SYT(rn/r ), cDes = Rhoades’ cyclic descent set, and p =

promotion.
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A non-Escher property

“Ascending and Descending”, M. C. Escher

The paradox of cDes(π) = ∅ and cDes(π) = [n].
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Hook partitions have at most one part of size > 1.

Example

Theorem (Adin-Reiner-R ’18)

The set SYT(λ) has a cyclic descent extension ⇐⇒ λ is non-hook.

• Proof is algebraic (involves Postnikov’s toric Schur functions
and Gromov-Witten invariants).

• A constructive combinatorial proof was given by Brice Huang.
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Significance of CDE

• Combinatorial: Enumeration, twisted promotion.

• Algebraic: Cyclic descent algebras, cyclic QSF,
Postnikov’s toric Schur functions, higher Lie characters.

• Geometric: Steinberg torus, Gromov-Witten invariants.
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Cyclic descent extension on conjugacy classes
Let Cµ ⊆ Sn be a conjugacy class of cycle type µ.

Problem:

Which conjugacy classes Cµ ⊂ Sn carry a CDE ?

Example

Consider the conjugacy class of 4-cycles in S4

C(4) = {2341, 4123, 4312, 3421, 2413, 3142}.

Cellini’s cDes sets are {3}, {1}, {1, 2}, {2, 3}, {2, 4}, {1, 3}
Not a CDE (not closed under cyclic rotation). Letting

cDes(2341) = {3, 4}, cDes(4123) = {4, 1}, cDes(4312) = {1, 2},

cDes(3421) = {2, 3}, cDes(2413) = {2, 4}, cDes(3142) = {1, 3},

determines a CDE.
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Main Result
Cyclic descent extension on conjugacy classes

Theorem (Adin-Hegedüs-R ’20)

Let Cµ ⊂ Sn be a conjugacy class of cycle type µ.
The following are equivalent:

(i) The descent map Des on Cµ has a cyclic extension (CDE).

(ii) µ is not of the form (r s) for some square-free r .

The proof is algebraic (involves higher Lie characters).

Problem 3:

Find a constructive combinatorial proof.
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Higher Lie characters
Let

Lµ :=
∑
π∈Cµ

Fn,Des(π),

where
Fn,Des(π) :=

∑
1≤i1≤···≤in

π(j)>π(j+1)=⇒ij<ij+1

xi1 · · · xin

Gessel’s fundamental quasi-symmetric function.

Let Zµ be the centralizer of π ∈ Cµ.
There exists a 1-dim character ωµ of Zµ such that

ch(ωµ ↑SnZµ) = Lµ.

The higher Lie character indexed by µ ` n is

ψµ := ωµ ↑SnZµ .
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Classical Results

Theorem For every λ ` n

bn/2c∑
k=0

〈L(2k ,1n−2k ), sλ〉 = 1.

Theorem For every λ ` n∑
µ`n
〈Lµ, sλ〉 = # SYT(λ).

Thrall’s Problem (’42):

Give a closed formula / combinatorial interpretation
to the inner product

〈Lµ, sλ〉 .

KraskiewiczWeyman, DésarménienWachs, GesselReutenauer, Sundaram, Schocker, HershReiner, AhlbachSwanson...



Cyclic descents CDE Main result Higher Lie characters Proof method Problems

Classical Results

Theorem For every λ ` n

bn/2c∑
k=0

〈L(2k ,1n−2k ), sλ〉 =

1.

Theorem For every λ ` n∑
µ`n
〈Lµ, sλ〉 = # SYT(λ).

Thrall’s Problem (’42):

Give a closed formula / combinatorial interpretation
to the inner product

〈Lµ, sλ〉 .

KraskiewiczWeyman, DésarménienWachs, GesselReutenauer, Sundaram, Schocker, HershReiner, AhlbachSwanson...



Cyclic descents CDE Main result Higher Lie characters Proof method Problems

Classical Results

Theorem For every λ ` n

bn/2c∑
k=0

〈L(2k ,1n−2k ), sλ〉 = 1.

Theorem For every λ ` n∑
µ`n
〈Lµ, sλ〉 = # SYT(λ).

Thrall’s Problem (’42):

Give a closed formula / combinatorial interpretation
to the inner product

〈Lµ, sλ〉 .

KraskiewiczWeyman, DésarménienWachs, GesselReutenauer, Sundaram, Schocker, HershReiner, AhlbachSwanson...



Cyclic descents CDE Main result Higher Lie characters Proof method Problems

Classical Results

Theorem For every λ ` n

bn/2c∑
k=0

〈L(2k ,1n−2k ), sλ〉 = 1.

Theorem For every λ ` n∑
µ`n
〈Lµ, sλ〉 =

# SYT(λ).

Thrall’s Problem (’42):

Give a closed formula / combinatorial interpretation
to the inner product

〈Lµ, sλ〉 .

KraskiewiczWeyman, DésarménienWachs, GesselReutenauer, Sundaram, Schocker, HershReiner, AhlbachSwanson...



Cyclic descents CDE Main result Higher Lie characters Proof method Problems

Classical Results

Theorem For every λ ` n

bn/2c∑
k=0

〈L(2k ,1n−2k ), sλ〉 = 1.

Theorem For every λ ` n∑
µ`n
〈Lµ, sλ〉 = # SYT(λ).

Thrall’s Problem (’42):

Give a closed formula / combinatorial interpretation
to the inner product

〈Lµ, sλ〉 .

KraskiewiczWeyman, DésarménienWachs, GesselReutenauer, Sundaram, Schocker, HershReiner, AhlbachSwanson...



Cyclic descents CDE Main result Higher Lie characters Proof method Problems

Classical Results

Theorem For every λ ` n

bn/2c∑
k=0

〈L(2k ,1n−2k ), sλ〉 = 1.

Theorem For every λ ` n∑
µ`n
〈Lµ, sλ〉 = # SYT(λ).

Thrall’s Problem (’42):

Give a closed formula / combinatorial interpretation
to the inner product

〈Lµ, sλ〉 .

KraskiewiczWeyman, DésarménienWachs, GesselReutenauer, Sundaram, Schocker, HershReiner, AhlbachSwanson...



Cyclic descents CDE Main result Higher Lie characters Proof method Problems

Classical Results

Theorem For every λ ` n

bn/2c∑
k=0

〈L(2k ,1n−2k ), sλ〉 = 1.

Theorem For every λ ` n∑
µ`n
〈Lµ, sλ〉 = # SYT(λ).

Thrall’s Problem (’42):

Give a closed formula / combinatorial interpretation
to the inner product

〈Lµ, sλ〉 .

KraskiewiczWeyman, DésarménienWachs, GesselReutenauer, Sundaram, Schocker, HershReiner, AhlbachSwanson...



Cyclic descents CDE Main result Higher Lie characters Proof method Problems

Hook multiplicities and CDE

A subset A ⊆ Sn is Schur-positive if the associated
quasi-symmetric function

Q(A) :=
∑
a∈A
Fn,Des(a),

is symmetric and Schur-positive.

Lemma (AHR)

A Schur-positive set A ⊆ Sn has a cyclic descent extension
⇐⇒ the following two conditions hold:

(divisibility) the polynomial
∑n−1

k=0〈Q(A), s(n−k,1k )〉xk

is divisible by 1 + x ;
(non-negativity) the quotient has nonnegative coefficients.
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Divisibility

Lemma
For every Sn-character φ, the hook-multiplicity generating function

Mφ(x) :=
n−1∑
k=0

〈φ, χn−k,1k 〉xk

is divisible by 1 + x if and only if the value of φ on an n-cycle is
zero: φ(n) = 0.

Lemma
For λ ` n

ψλ(n) =

{
µ(r), if λ = (r s);

0, otherwise ,

where µ(r) is the Möbius function.
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Non-negativity - the case of distinct cycle lengths

Lemma (AHR)

Let λ = (r s) t ν be a partition of n, where ν is a partition of
n − rs with no part equal to r . Then

Mλ(x) :=
n−1∑
k=0

〈Lλ, s(n−k,1k )〉xk = (1 + x)M(r s)(x)Mν(x).

Corollary
For conjugacy classes Cλ with distinct cycle lengths,
the hook multiplicities g.f. Mλ(x) is divisible by 1 + x ,
and the quotient has non-negative coefficients.
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Non-negativity - the n-cycle case

Denote
mk,λ := 〈Lλ, s(n−k,1k )〉.

Lemma [Sundaram ’94]

mk−1,(n)+mk,(n) = 〈L(n), ekhn−k〉 =
1

n

∑
d |(n,k)

µ(d)(−1)k+k/d

(
n/d

k/d

)
.

Theorem (AHR)

For every positive integer n the sequence

m0,(n),m1,(n), . . . ,mn−1,(n)

is unimodal.
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Non-negativity - the case of cycle type (r , . . . , r)

We have to prove that for every s ≥ 1 and square-free r

M(r s)(x)

1 + x
:=

∑
k

〈L(r s), s(n−k,1k )〉xk

1 + x

has non-negative coefficients.

For a given r ≥ 1 let

Er (x , y) :=
∑
s,k≥0

〈L(r s), ekhr s−k〉xky s .

Observation
Er (x , y)− 1

(1 + x)2
=
∑
s≥1

y s M(r s)(x)

1 + x
.
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Lemma [Sundaram ’94]

fr ,k := 〈L(r), ekhr−k〉 =
1

r

∑
d |(r ,k)

µ(d)(−1)k+k/d

(
r/d

k/d

)
.

Lemma (AHR)

For every s ≥ 1 and k ≥ 0

〈L(r s), ekhr s−k〉 =
∑

γ∈Pr,s(k)

∏
j≥0

(−1)(j+1)tj (γ)

(
(−1)j+1fr ,j

tj(γ)

)
.

where Pr ,s(k) := {λ ` k : λ1 ≤ r , λ′1 ≤ s} and tj(γ) - the
multiplicity of the part j in γ.
In particular, for s = 1 we obtain Sundaram’s formula.

Corollary For every r ≥ 1∑
k,s

〈L(r s), ekhr s−k〉xky s =
∏
j

(1− (−1)jx jy)(−1)j+1〈L(r),ejhr−j 〉.
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Open Problems

Problem 1:

Find an explicit combinatorial description of the cyclic descent
extension (CDE) for conjugacy classes of cycle type, which is not

equal to (r s) for some square free r .

Conjecture 2:

For every partition λ ` n, the g.f.

n−1∑
k=0

〈Lλ, s(n−k,1k )〉xk

is unimodal.
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Thank You!
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