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Solitons in SBBS



The Box-Ball System
Box-Ball Systems and Crystals

The Super Box-Ball System

Description of the Box-Ball System
Description of Soliton

Outline

1 The Box-Ball System
Description of the Box-Ball System
Description of Soliton

2 Box-Ball Systems and Crystals

3 The Super Box-Ball System



The Box-Ball System
Box-Ball Systems and Crystals

The Super Box-Ball System

Description of the Box-Ball System
Description of Soliton

What is a Box-Ball System?

The box-ball system (BBS) is an ultradiscrete (discrete in time and
space) analogue of the Korteweg–de Vries (KdV) equation,

∂u

∂t
+

∂3u

∂x3
− 6u

∂u

∂x
= 0

function u(x , t)
x = space
t = time

which describes water moving through a one dimensional channel.

The KdV equation admits soliton solutions, which are solitary waves
moving through the channel.
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Definition (Box-ball system)

Composed of a finite number of balls in an infinite line of boxes.

The time evolution of the system is defined by the following
algorithm:

The left most ball is moved the nearest empty box to its right.
Repeat for each ball until all have been moved once.

Example

t = 0 · · ·

t = 1 · · ·
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Solitonic Behaviour

A soliton in the BBS is a group of balls that exhibits the following
behaviour:

Speed corresponding to length.

Stability under collisions.

These conditions are analogous to the defining properties of a soliton
solution to the KdV equation.
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General Linear Lie Algebra

Consider the general linear Lie algebra gl2;

the space of 2× 2 matrices,
equipped with commutator [X ,Y ] = XY − YX .
If v1 = ( 10 ) and v2 = ( 01 ) are the standard basis vectors for a
2-dimensional complex vector space, and

e1 =

(
0 1
0 0

)
, f1 =

(
0 0
1 0

)
, h1 =

(
1 0
0 −1

)
, 1 =

(
1 0
0 1

)
is a standard basis for gl2, then

v1 v2

f1

e1

h1 h1

(up to scalar multiples).
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Crystal Example

We can encode these relationships with a crystal,

v1 v2h1 h1

f1

e1

For our purposes, a crystal is a labelled directed graph, whose

vertices are tableau containing indices of the vector space basis

edge labels correspond to generators of the Lie algebra.
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Tensor products

More generally, we can consider any Uq(gl2) representation, and
construct a crystal from the q → 0 limit of the canonical basis.

This allows us to use tableaux of different shapes.

We can compute tensor products of crystals using a signature rule.

Typically, the crystal is not connected under tensor products.

The affine Lie algebra ĝl2, instead of gl2, provides us with additional
operators e0 and f0:

1 2
1

0

Tensor products of these crystals are connected.
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Encoding a BBS with crystals

We can encode a BBS state, such as

· · ·

by

2 ⊗ 2 ⊗ 2 ⊗ 1 ⊗ 1 ⊗ 2 ⊗ 1 ⊗ 1 ⊗ · · ·

where

1 represents an empty box (aka a vacuum element)

2 represents a full box.
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Carrier and R-matrix

To carry out time evolution, we use a carrier to ‘pick up’ balls and
place them in the correct places.

The carrier is a single-row tableau, for example

1 1 1

We can move the carrier using the combinatorial R-matrix:

R : B( )⊗ B( ) −→ B( )⊗ B( )
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Carrier and R-matrix

If we swap the order of the tensor products, we obtain isomorphic
crystals:

1 1 1 ⊗ 1

1 1 1 ⊗ 2 1 1 2 ⊗ 1

1 1 2 ⊗ 2 1 2 2 ⊗ 1

1 2 2 ⊗ 2 2 2 2 ⊗ 1

2 2 2 ⊗ 2

10

1010

1010

10

1 ⊗ 1 1 1

1 ⊗ 1 1 2 2 ⊗ 1 1 1

1 ⊗ 1 2 2 2 ⊗ 1 1 2

1 ⊗ 2 2 2 2 ⊗ 1 2 2

2 ⊗ 2 2 2

10

1010

1010

10

The R-matrix is this isomorphism.
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Time evolution using the R-matrix

· · ·

t = 0 2 ⊗ 2 ⊗ 2 ⊗ 1 ⊗ 1 ⊗ 2 ⊗ 1 ⊗ 1 ⊗ · · ·

Time evolution

t = 1 1 ⊗ 1 ⊗ 1 ⊗ 2 ⊗ 2 ⊗ 1 ⊗ 2 ⊗ 2 ⊗ 1 ⊗ · · ·

· · ·
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General Linear Lie Superalgebra

Definition

The general linear Lie superalgebra gl(m|n) is the set of all linear
transformations of the (m|n)-dimensional super vector space, equipped
with the super-commutator [X ,Y ] = XY − (−1)|X ||Y |YX .

Using the structure of this superalgebra we describe the generalised
supersymmetric box-ball system (SBBS).
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Crystals in Uq(gl(m|n))

Let vm, vm−1, . . . , v1, v1, . . . , vn−1, vn be the standard basis vectors of
the (m|n)-dimensional super vector space over which gl(m|n) acts.

The crystal for gl(m|n) is

m
m−1−−−→ m − 1

m−2−−−→ · · · 1−→ 1
0−→ 1

1−→ · · · n−2−−→ n − 1
n−1−−→ n

We call the barred values the bosonic entries, and the unbarred
fermionic entries.



The Box-Ball System
Box-Ball Systems and Crystals

The Super Box-Ball System

Description of ĝl(m|n)
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A tableau of shape Y r ,1 is a column of values as follows

r


x1
x2
...
xr

Increasing
(strict if
bosonic)

where xi ∈ {m,m − 1, . . . , 1, 1, . . . , n − 1, n}.

An empty box, or vacuum, is the tableau

r


m

m − 1
...

m − r + 1
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Defining the super box-ball system

The state of a SBBS is a tensor product of single column tableaux.

In this super system the carrier is initialised with

m · · · m
...

. . .
...

m − r + 1 · · · m − r + 1︸ ︷︷ ︸
ℓ

.

From Kwon–Okado, we have a Uq(ĝl(m|n))-crystal structure and a
combinatorial R-matrix that we can use to define time evolution of
the system.
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The R-matrix and Schensted’s Bumping Algorithm

The combinatorial R-matrix gives the unique isomorphism between
the tensor product of crystals.

We can describe the action of the R-matrix using a modified version
of Schensted’s bumping algorithm.

The insertion of i ∈ {m,m − 1, . . . , n − 1, n} into tableau x is
denoted i → x .

The column reading of a tableau x is the Japanese reading
(top-to-bottom, right-to-left), denoted col(x).
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 4 4 1
3 3 2
1 2 3


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The R-matrix and Schensted’s Bumping Algorithm

The combinatorial R-matrix gives the unique isomorphism between
the tensor product of crystals.

We can describe the action of the R-matrix using a modified version
of Schensted’s bumping algorithm.

The insertion of i ∈ {m,m − 1, . . . , n − 1, n} into tableau x is
denoted i → x .
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We can describe the action of the R-matrix using a modified version
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The insertion of i ∈ {m,m − 1, . . . , n − 1, n} into tableau x is
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(top-to-bottom, right-to-left), denoted col(x).
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The combinatorial R-matrix gives the unique isomorphism between
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of Schensted’s bumping algorithm.

The insertion of i ∈ {m,m − 1, . . . , n − 1, n} into tableau x is
denoted i → x .
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2 → 3 3 1 3
2 1 2 5

Schensted’s Bumping Algorithm
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R-matrix and Schensted’s Bumping Algorithm

[Kwon–Okado 2021] Suppose we have the tensor product of tableaux
x ⊗ y . Then the combinatorial R-matrix sends x ⊗ y to ỹ ⊗ x̃ , if and only
if col (y) → x = col(x̃) → ỹ .
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Solitons in SBBS

Computation of the R-matrix

Set x =
4 4 3
3 1 3
1 2 3

, y =
3
1
2

, ỹ =
3
1
3

, x̃ =
4 4 1
3 3 2
1 2 3

.

Insertion
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Computation of the R-matrix

Thus,

R

 4 4 3
3 1 3
1 2 3

⊗
3
1
2

 =
3
1
3

⊗
4 4 1
3 3 2
1 2 3
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Example ĝl(2|2)
Consider ĝl(2|2). Let represent the vacuum element.

t = 0 2 1 1
1 2 1

t = 1 2 1 1
1 2 1

t = 2 2 1 1
1 2 1

t = 3 2 1
1 1

t = 4 2 1
1 1

t = 5 1 2 1
2 1 1

t = 6 1 2 1
2 1 1
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Consider ĝl(2|2). Let represent the vacuum element.

t = 0 2 1 1
1 2 1

t = 1 2 1 1
1 2 1

t = 2 2 1 1
1 2 1

t = 3 2 1
1 1

t = 4 2 1
1 1

t = 5 1 2 1
2 1 1

t = 6 1 2 1
2 1 1



The Box-Ball System
Box-Ball Systems and Crystals

The Super Box-Ball System

Description of ĝl(m|n)
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Soliton Speed

Let S ∈ B(Y r ,1)⊗s be given by

x11
x21
...

xr1

⊗

x12
x22
...

xr2

⊗ · · · ⊗

x1s
x2s
...

xrs

increasing
(strict if
bosonic)

decreasing (strict if fermionic)

< m − r

≥ m − r

Then S moves with speed equal to its length.
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Soliton Collisions

Theorem (Ryan–S. 2022+; Soliton Collisions)

If S and T both have the form on the previous slide and we draw the line
directly above the last row, then S and T are stable under collision.

Example

Consider height-3 tableaux for ĝl(4|2) (so m = 4, r = 3).

3
2
2

⊗
4
2
1

⊗
4
3
1

< m − r = 1

≥ m − r = 1

satisfies the assumptions of the theorem.
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Bigger Picture?

There is a super analog of the KdV equation. What is the
relationship with our system?

Does the super box-ball system relate to the supersymmetric version
of the Kadomtsev–Petviashvili (KP) hierarchy?

To the supersymmetric Heisenberg spin chains?

To the supersymmetric Toda lattice?
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