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Warm up: real rooted polynomials

A univariate polynomial f ∈ R[x ] is real rooted
if all of its zeros (over C) are real.

Discrete log-concavity: If f =
∑n

k=0 akx
k is real rooted and has

nonnegative coefficients, then (a0, . . . , an) is ultra log-concave:

ak−1(
n

k−1

) · ak+1(
n

k+1

) ≤ ( ak(
n
k

))2

. (Newton’s inequalities)

Continuous log-concavity: If f =
∑n

k=0 akx
k is real rooted and has

nonnegative coefficients, f is log-concave on R+:

f =
n∏

i=1

(x − λi ) ⇒ log(f )′′ =
n∑

i=1

−1

(x − λi )2
≤ 0
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Multivariate generalization: real stability

f ∈ R[x1, . . . , xn] is stable if f has no
zeros in Hn

+ = {z ∈ Cn : Im(z) ∈ Rn
>0}.

Example: det(
∑n

i=1 xiAi ) with Ai � 0

Example: f =
∑

T∈T
∏

e∈T xe where T = {spanning trees of G}{
spanning trees of

3

5
2

1

4

}
=

{
3

5
2

1

4
, . . . ,

3

5
2

1

4

}
↓

x1x2x3 + x1x2x5 + x1x3x4 + x1x3x5

+x1x4x5 +x2x3x4 +x2x4x5 +x3x4x5
= det

x1 + x4 −x4 0
−x4 x2 + x4 + x5 −x5

0 −x5 x3 + x5


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Stable Polynomials in Combinatorics and Optimization

Convex Optimization (Hyperbolicity and Interior Point Methods)
Güler (1997), Truong, Tuncel (2004), Renegar (2006)

See also: Hyperbolic Polynomials and Convex Analysis
by Bauschke, Güler, Lewis, Sendov (2001)

Operator theory and Ramanujan graphs (Interlacing families)
Marcus, Spielman, Srivastava (2013)

Counting, Sampling, Negative dependence
Gurvits (2008), Anari, Oveis Gharan, Rezaei (2016),
Li, Jegelka, Sra (2016), Straszak, Vishnoi (2017).

See also: Negative dependence and the geometry of polynomials
by Borcea, Brändén, Liggett (2009)



Stable polynomials and negative dependence
Theorem (Brändén 2007) If f ∈ R[x1, . . . , xn] is stable, then for every
i , j ∈ [n], the polynomial

∆ij(f ) =
∂f

∂xi
· ∂f
∂xj
− f · ∂2f

∂xi∂xj

is nonnegative on Rn.

If the generating polynomial f for a probability measure µ is stable, then
evaluating at 1 = (1, . . . , 1) gives

∆ij(f )(1) = Prob(i ∈ S) · Prob(j ∈ S)− Prob(i , j ∈ S) ≥ 0.

Example: T = spanning tree of
3

5
2

1

4
chosen uniformly at random

Prob(1, 2 ∈ T ) = 2
8 <

5
8 ·

4
8 = Prob(1 ∈ T ) · Prob(2 ∈ T )

That is, Prob(1 ∈ T ) ≥ Prob(1 ∈ T |2 ∈ T )

Choe, Oxley, Sokal, Wagner (2002): close connection with matroids
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Matroids

Matroids are a combinatorial model of independence.

Examples: linear independence of vectors in a vectorspace
cyclic independence of edges in a graph

Formally: M = ([n],B) where B is a collection of subsets of [n] with

A,B ∈ B, a ∈ A\B ⇒ ∃b ∈ B\A with A\{a} ∪ {b} ∈ B

These are the objects on which the greedy algorithm always succeeds
(e.g. min-cost spanning tree of a graph).

Many encodings:
Independence complex: I = {S ⊆ [n] : S ∈ B for some B ∈ B}

Basis Polytope: conv{1B : B ∈ B} ⊂ [0, 1]n

Non-ex: {{1, 2}, {3, 4}} not the set of bases of a matroid
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Matroids and combinatorial Hodge theory

In 2015, Adiprasito, Huh, and Katz develop combinatorial Hodge
theory and use it to show the log-concavity of the sequence
i0, i1, . . . in where ik = #{I ∈ I : |I | = k} for any matroid ([n], I).

They prove the hard Lefschetz theorem and the Hodge-Riemann
relations for a commutative ring associated to an arbitrary matroid.

Several groups then worked to simplify and exploit their techniques:

Huh, Schröter, Wang: Correlation bounds for fields and matroids

Brändén and Huh: Lorentzian Polynomials

Backman, Eur, and Simpson: Simplicial generation of Chow
rings of matroids

Chan and Pak: Combinatorial Atlases

Common theme: signatures of quadratic forms on subspaces
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Log-concave polynomials

A polynomial f ∈ R[x1, . . . , xn] is log-concave
on Rn

>0 if log(f ) : Rn
>0 → R is concave.

⇔ eigenvalues of the Hessian ∇2 log(f ) =
(∂2 log(f )

∂xi∂xj

)
ij

are ≤ 0

Example: stable polynomials with coeff. in R≥0

Gurvits (2008): Log-concavity of f and derivatives ⇒ Newton’s inequalities

Anari, Oveis Gharan, V. (2018): The basis-generating polynomial∑
B∈B

∏
i∈B xi of any matroid is log-concave on Rn

≥0.

Brändén, Huh (2019): develop equivalent Lorentzian polynomials and

show connection with matroids, M-convex functions
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Log-concavity and the second eigenvalue

Remark. If f is log-concave at a point a ∈ Rn
+ then

∇2 log(f )
∣∣
x=a

=
f∇2f −∇f∇f T

f 2

∣∣∣∣
x=a

is negative semidefinite.

For Q = ∇2f (a) the quadratic form x 7→ xTQx
is nonpositive on the hyperplane 〈x,∇f (a)〉 = 0.
⇒ Q has at most one positive eigenvalue

If f has nonnegative coefficients,
the entries of Q are nonnegative.
⇒ Q has at least one positive eigenvalue

Example. f = x1x2 + x1x3 + x1x4 + x2x3 + x2x4 + x3x4

∇2f =

(
0 1 1 1
1 0 1 1
1 1 0 1
1 1 1 0

)
= 11T − Id4 (one pos. eig. val.)
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Implications for discrete log-concavity

If f is homogeneous of degree ≥ 2
with nonnegative coefficients, then

f is log-concave at a ∈ Rn
+ ⇔ ∇2f (a) has one positive eig. val.

Theorem (Gurvits) If f =
∑n

k=0 akx
kyn−k is strongly log-concave

on Rn
+, then the sequence a0, a1, . . . , an is ultra log-concave.

Why? Take q = ( ∂
∂x )k−1( ∂

∂y )n−k−1f . Then

det
(
∇2q

)
= (n!)2

(
ak−1( n
k−1

) · ak+1( n
k+1

) − a2
k(n

k

)2

)
≤ 0.
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Log-concavity for matroid polynomials

Theorem. If f =
∑

S∈([n]
d ) cSxS is strongly log-concave then

{S : cS 6= 0} are the bases of a matroid. Moreover, for any
matroid with bases B and independent sets I

fB =
∑
B∈B

∏
i∈B

xi and gI =
∑
I∈I

yn−|I |
∏
i∈I

xi

are strongly log-concave on Rn
+ and Rn+1

+ , respectively.

Example. f = x1x2 + x1x3 + x1x4 + x2x3 + x2x4 + x3x4

∇2f =

(
0 1 1 1
1 0 1 1
1 1 0 1
1 1 1 0

)
= 11T − Id4 (one pos. eig. val.)

Non-example. f = x1x2 + x3x4

∇2f =

(
0 1 0 0
1 0 0 0
0 0 0 1
0 0 1 0

)
(two pos. eig. vals.)
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Log-concavity for independent sets
Corollary: For any matroid M = ([n], I), the sequence (i0, . . . , in)
with ik = #{I : I ∈ I, |I | = k} is ultra log-concave.

Why? gI(x , . . . , x , y) =
∑

I∈I y
n−|I |x |I | =

∑n
k=0 ikx

kyn−k

Example: independent sets I = {acylic subgraphs}

i0 = 1

i0/
(5

0

)
= 1

i1 = 5

i1/
(5

1

)
= 1

i2 = 10

i2/
(5

2

)
= 1

i3 = 8

i3/
(5

3

)
= 4/5

y5 + 5xy4 + 10x2y3 + 8x3y3 is strongly log-concave on R2
+
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A local to global theorem for log-concavity
Call f indecomposable if the graph ([n], {{i , j} : ∂2f

∂xi∂xj
6= 0}) is connected

e.g. x1x2 + x2x3 + x3x4 is indecomposable, x1x2 + x3x4 is not

Theorem. Let f ∈ R[x1, . . . , xn]d be homogeneous of degree d and
have nonnegative coefficients. The following are equivalent:

(1) f is strongly log-concave,

(2) for any a1, . . . , ad−2 ∈ Rn
≥0,

∏
j Daj f is log-concave, and

(3) for all α ∈ Nn with |α| ≤ d − 2, the polynomial
∂αf is indecomposable, and for all α ∈ Nn with |α| = d − 2,
the quadratic polynomial ∂αf is log-concave.

Idea: q1(x) = xTQ1x and q2(x) = xTQ2x are
≥ 0 on Rn

+ and ≤ 0 on some hyperplane H,
then so is λq1 + µq2 for λ, µ ∈ R≥0.
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The second eigenvalue and expansion

Expansion of a graph G = ([n],E ):

h(G ) = min
S⊆[n]

|E (S ,Sc)|
min{|S |, |Sc |}

S Sc

Cheeger’s inequality: For any d-regular graph G = ([n],E ),

(1− λ2)

2
≤ 1

d
h(G ) ≤

√
2(1− λ2)

where λn ≤ . . . ≤ λ2 ≤ λ1 = 1 are the eigenvalues of the
normalized adjacency matrix 1

dAG of G .

Conjecture (Mihail and Vazirani)
The edge graph of any 0-1 polytope has expansion ≥ 1.
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The second eigenvalue and Markov Chains
A Markov chain on [n] = {1, . . . , n} is determined by a transition
matrix P ∈ Rn×n

≥0 where Pij represents Prob(i → j).

Example: P =

(
1/2 1/2
3/4 1/4

)
1 2

1/2

3/4

1
2

1
4

Stationary distribution: π ∈ Rn
≥0,

∑
j πj = 1, πP = π

Mixing time: tj(ε) = min{t ∈ N : ||Pt(j , ·)− π||1 ≤ ε}

Theorem (Diaconis, Stroock,’91) For a reversible irreducible
Markov chain with P, π as above, ε > 0, j ∈ [n],

tj(ε) ≤ 1

1− λ∗(P)
· log

(
1

ε · πj

)
where λ∗(P) = max{λ2, |λn|}

and λn ≤ . . . ≤ λ2 ≤ λ1 = 1 are the eigenvalues of P.

P−→ P−→ P−→ . . .
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High dimensional expanders and random walks

Building on work of Dinur, Garland, Kaufman, Lubotzky, Mass, Oppenheim . . .

∆ = simplicial complex, maximal elts. all have same size d

Random walks on ∆(k) and ∆(k − 1)

I σ ∈ ∆(k) → σ\{i}, uniformly over i ∈ σ
I τ ∈ ∆(k − 1) → τ ∪ {j} with prob. prop. to some weight

. . .∆(k)

∆(k − 1)

Down-up walk on ∆(k): transition matrix P∨k
Up-down walk on ∆(k − 1): transition matrix P∧k−1
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High dimensional expanders – local to global

Building on work of Dinur, Garland, Kaufman, Lubotzky, Mass, Oppenheim . . .

. . .∆(k)

∆(k − 1)

Kaufman, Oppenheim (2018) bound the eigenvalues for the random walk
on ∆(d) in terms of the eigenvalues of walks on the links of ∆.

→ “λ-local spectral expander”

Anari, Liu, Oveis Gharan, V., (2019): The independence complex
of any matroid is a 0-local spectral expander and the edge-graph
of the matroid basis polytope has edge expansion ≥ 1.

Mihail, Vazirani (1989) conjecture this to hold for all 0-1 polytopes.



A small example
Random process on [4] = {1, 2, 3, 4}
I {i} → {i , j} uniformly over j ∈ [4]\{i} (prob = 1/3)

I {i , j} → {i , j}\{k} uniformly over k ∈ {i , j} (prob = 1/2)

P∧1 =

1/2 1/6 1/6 1/6
1/6 1/2 1/6 1/6
1/6 1/6 1/2 1/6
1/6 1/6 1/6 1/2

 =
1

6

(
1 1 1 0 0 0
1 0 0 1 1 0
0 1 0 1 0 1
0 0 1 0 1 1

)1 1 0 0
1 0 1 0
1 0 0 1
0 1 1 0
0 1 0 1
0 0 1 1



=
1

2
Id4 +

1

6
∇2(x1x2 + x1x3 + x1x4 + x2x3 + x2x4 + x3x4)

⇒ 0 ≤ λn and λ2 ≤ 1/2 ⇒ λ∗(P∧1 ) ≤ 1/2
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A small example (continued)

Random process on
([4]

2

)
= {{1, 2}, {1, 3}, {1, 4}, {2, 3}, {2, 4}, {3, 4}}

I {i , j} → {i , j}\{k} uniformly over k ∈ {i , j} (prob = 1/2)

I {i} → {i , j} uniformly over j ∈ [4]\{i} (prob = 1/3)

P∨2 =

1/3 1/6 1/6 1/6 1/6 0
1/6 1/3 1/6 1/6 0 1/6
1/6 1/6 1/3 0 1/6 1/6
1/6 1/6 0 1/3 1/6 1/6
1/6 0 1/6 1/6 1/3 1/6

0 1/6 1/6 1/6 1/6 1/3

=
1

6

1 1 0 0
1 0 1 0
1 0 0 1
0 1 1 0
0 1 0 1
0 0 1 1

(1 1 1 0 0 0
1 0 0 1 1 0
0 1 0 1 0 1
0 0 1 0 1 1

)

P∨2 has the same nonzero eigenvalues as P∧1 ⇒ λ∗(P∨2 ) ≤ 1/2
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Local spectral expanders

Building on work of Dinur, Garland, Kaufman, Lubotsky, Mass, Oppenheim . . .

(∆,w) is a 0-local spectral expander if

I for every σ ∈ ∆ with |σ| ≤ d − 2,
the 1-skeleton of link∆(σ) is connected, and

I for every σ ∈ ∆(d − 2),
the induced up-down walk on link∆(σ) has λ2 ≤ 1

2

Theorem (Kaufman, Oppenheim, 2018)
If (∆,w) is a 0-local spectral expander, then λ2(P∨d ) ≤ 1− 1

d .

(Idea)

I P∨k and P∧k−1 have the same nonzero eigenvalues (almost)

I Using connectivity and eig. val. on links, one can bound the
eigenvalues of P∧k as a function of the eigenvalues of P∨k .



Local spectral expanders

Building on work of Dinur, Garland, Kaufman, Lubotsky, Mass, Oppenheim . . .

(∆,w) is a 0-local spectral expander if

I for every σ ∈ ∆ with |σ| ≤ d − 2,
the 1-skeleton of link∆(σ) is connected, and

I for every σ ∈ ∆(d − 2),
the induced up-down walk on link∆(σ) has λ2 ≤ 1

2

Theorem (Kaufman, Oppenheim, 2018)
If (∆,w) is a 0-local spectral expander, then λ2(P∨d ) ≤ 1− 1

d .

(Idea)

I P∨k and P∧k−1 have the same nonzero eigenvalues (almost)

I Using connectivity and eig. val. on links, one can bound the
eigenvalues of P∧k as a function of the eigenvalues of P∨k .



Local spectral expanders

Building on work of Dinur, Garland, Kaufman, Lubotsky, Mass, Oppenheim . . .

(∆,w) is a 0-local spectral expander if

I for every σ ∈ ∆ with |σ| ≤ d − 2,
the 1-skeleton of link∆(σ) is connected, and

I for every σ ∈ ∆(d − 2),
the induced up-down walk on link∆(σ) has λ2 ≤ 1

2

Theorem (Kaufman, Oppenheim, 2018)
If (∆,w) is a 0-local spectral expander, then λ2(P∨d ) ≤ 1− 1

d .

(Idea)

I P∨k and P∧k−1 have the same nonzero eigenvalues (almost)

I Using connectivity and eig. val. on links, one can bound the
eigenvalues of P∧k as a function of the eigenvalues of P∨k .



Local spectral expanders

Building on work of Dinur, Garland, Kaufman, Lubotsky, Mass, Oppenheim . . .

(∆,w) is a 0-local spectral expander if

I for every σ ∈ ∆ with |σ| ≤ d − 2,
the 1-skeleton of link∆(σ) is connected, and

I for every σ ∈ ∆(d − 2),
the induced up-down walk on link∆(σ) has λ2 ≤ 1

2

Theorem (Kaufman, Oppenheim, 2018)
If (∆,w) is a 0-local spectral expander, then λ2(P∨d ) ≤ 1− 1

d .

(Idea)

I P∨k and P∧k−1 have the same nonzero eigenvalues (almost)

I Using connectivity and eig. val. on links, one can bound the
eigenvalues of P∧k as a function of the eigenvalues of P∨k .



Local spectral expanders

Building on work of Dinur, Garland, Kaufman, Lubotsky, Mass, Oppenheim . . .

(∆,w) is a 0-local spectral expander if

I for every σ ∈ ∆ with |σ| ≤ d − 2,
the 1-skeleton of link∆(σ) is connected, and

I for every σ ∈ ∆(d − 2),
the induced up-down walk on link∆(σ) has λ2 ≤ 1

2

Theorem (Kaufman, Oppenheim, 2018)
If (∆,w) is a 0-local spectral expander, then λ2(P∨d ) ≤ 1− 1

d .

(Idea)

I P∨k and P∧k−1 have the same nonzero eigenvalues (almost)

I Using connectivity and eig. val. on links, one can bound the
eigenvalues of P∧k as a function of the eigenvalues of P∨k .



Translation to polynomials

(∆,w) ↔ f =
∑

σ∈∆(d) w(σ)xσ

1

2

3

4

5
1/2

1/4
1/4

↔ 1
2x1x2x3 + 1

4x2x3x4 + 1
4x3x4x5

(link∆(σ),wσ) ↔ ∂σf =
∑

τ w(σ ∪ τ)xτ

connectivity of
1-skeleton of link∆(σ)

↔ indecomposability of ∂σf

trans. matrix on
link∆(σ) for |σ| = d − 2

λ2 ≤ 1
2

↔
1
2 Idn + 1

2Dσ∇
2∂σf

λ2(∇2∂σf ) ≤ 0

Theorem (Anari, Liu, Oveis Gharan, V., 2019)
(∆,w) is a 0-local spectral expander ⇔ f is strongly log-concave.
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Other consequences

Anari, Liu, Oveis Gharan, V., (2019): For any matroid with bases B and
rank r , the down-up walk on B has mixing time O(r2 log(n)).

Improved by Cryan, Guo and Mousa (2021) with a modified log-Sobolev
inequality and Anari, Liu, Oveis Gharan, V., Vuong (2021) → O(r log(r))

Anari, Liu, Oveis Gharan, V., Vuong (2021)
There is an algorithm to sample a random spanning tree in a graph with
n edges approximately uniformly at random in time O(n log2(n)).

Improves on n1+o(1) Schild (2018), and many other previous works
Aldous (1990), Broder (1989), Durfee, Kyng, Peebles, Rao, Sachdeva (2017)
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Example: spanning trees of a grid

How can we connect the nodes
in a 3 × 4 grid with the fewest
possible connections?

Idea: walk around space of
possibilities by adding and
removing redundant connections

After 30 steps, every configuration is
(about) equally likely (1 in 2415) no
matter how we start.
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Example: spanning trees of a grid

How can we connect the nodes
in a 3 × 4 grid with the fewest
possible connections?
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. . .

After 30 steps, every configuration is
(about) equally likely (1 in 2415) no
matter how we start.



Further Directions

Fractional log-concavity

Gen. poly. of λ-local spectral expanders are fractionally log-concave.

(λ = 0) {0-local spectral expanders} = {indep. complexes of matroids}
(λ > 0) {λ-local spectral expanders} = ???

Alimohammadi, Anari, Shiragur, Vuong (2021): approximately
sample/count monomer-dimer systems in planar graphs in poly. time.

More general: spectral independence

Anari, Liu, Oveis Gharan (2020) use eigenvalues of correlation matrices
to bound mixing time Glauber dynamics on distribution.

Abdolazimi, Liu, Oveis Gharan (2021): approximately sampling random
proper edge colorings via rapid mixing

Zongchen Chen, Kuikui Liu, Eric Vigoda (2021): improve Barvinok’s

polynomial interpolation method, approximately sample for weighted

edge cover problem and ferromagnetic Ising model in bounded degree
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Conclusions

I strong log-concavity is a useful, testable condition

I connects discrete and functional log-concavty

I many interesting polynomials have this property,
including matroid polynomials

I correspond to (0-local spectral) high dimensional expanders
and implies rapid mixing of related Markov chains


