What Fourier and Schur idempotents look like?

Javier Parcet

Instituto de Ciencias Matemáticas Consejo Superior de Investigaciones Científicas

-Joint with Mikael de la Salle and Eduardo Tablate-

Colloquium Talk – Harbin Institute of Technology June 2024 – Harbin, China

<ロト <部ト <注入 <注下 = 正

Introduction Fourier and Schur multipliers

▲□▶ ▲□▶ ▲臣▶ ▲臣▶ 臣 のへで

Hilbert transforms

Given $m: \mathbf{G} \to \mathbf{C}$ for some LCA group \mathbf{G} , let $T_m f = (m\hat{f})^{\vee}$ be the Fourier multiplier with symbol m. In the classical groups, we find that $T_m f(z) = \sum_{k \in \mathbf{Z}^n} m(k) \widehat{f}(k) z^k$ or $T_m f(x) = \int_{\mathbf{R}^n} m(\xi) \widehat{f}(\xi) e^{2\pi i \langle x, \xi \rangle} d\xi$.

うして ふゆ アメリア トレー ひゃく

Hilbert transforms

Given $m: G \to \mathbb{C}$ for some LCA group G, let $T_m f = (m\hat{f})^{\vee}$ be the Fourier multiplier with symbol m. In the classical groups, we find that $T_m f(z) = \sum_{k \in \mathbb{Z}^n} m(k) \hat{f}(k) z^k$ or $T_m f(x) = \int_{\mathbb{R}^n} m(\xi) \hat{f}(\xi) e^{2\pi i \langle x, \xi \rangle} d\xi$.

Fourier L_p -summability

- Smooth case: Which m_j 's give $\lim_{j\to\infty} ||f T_{m_j}f||_p = 0$?
- Partial Fourier summation: What if $m_j = \chi_{\Omega_j}$ for domains Ω_j ?
- Euclidean dilation invariance: Which Ω make $T_{\chi_{\Omega}} L_p(\mathbf{R}^n)$ -bded?

うして ふゆ アメリア トレー ひゃく

Hilbert transforms

Given $m: G \to \mathbb{C}$ for some LCA group G, let $T_m f = (m\hat{f})^{\vee}$ be the Fourier multiplier with symbol m. In the classical groups, we find that $T_m f(z) = \sum_{k \in \mathbb{Z}^n} m(k) \hat{f}(k) z^k$ or $T_m f(x) = \int_{\mathbb{R}^n} m(\xi) \hat{f}(\xi) e^{2\pi i \langle x, \xi \rangle} d\xi$.

Fourier L_p -summability

- Smooth case: Which m_j 's give $\lim_{i\to\infty} ||f T_{m_j}f||_p = 0$?
- Partial Fourier summation: What if $m_j = \chi_{\Omega_j}$ for domains Ω_j ?
- Euclidean dilation invariance: Which Ω make $T_{\chi_{\Omega}} L_p(\mathbf{R}^n)$ -bded?

The Hilbert transform in ${f R}$

$$Hf(x) = \text{p.v.} \int_{\mathbf{R}} \frac{f(y)}{x - y} dy = -i \int_{\mathbf{R}} \text{sgn}(\xi) \widehat{f}(\xi) e^{2\pi i \langle x, \xi \rangle} d\xi$$

Fourier L_p -summability works for dilations of a convex polyhedron Π

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ − クタペ

The ball multiplier theorem

What about dilations of the unit ball B? Original conjecture: $T_{\chi_{\rm B}}$ is $L_p(\mathbf{R}^n)$ -bounded iff |1/p - 1/2| < 1/2n.

The ball multiplier theorem

What about dilations of the unit ball B?

Original conjecture: $T_{\chi_{\rm B}}$ is $L_p(\mathbf{R}^n)$ -bounded iff |1/p - 1/2| < 1/2n.

Fefferman's ball multiplier theorem (1971)

If n > 1, the ball multiplier is L_p -unbounded for $p \neq 2$.

The ball multiplier theorem

What about dilations of the unit ball B?

Original conjecture: $T_{\chi_{\rm B}}$ is $L_p(\mathbf{R}^n)$ -bounded iff |1/p - 1/2| < 1/2n.

Fefferman's ball multiplier theorem (1971)

If n > 1, the ball multiplier is L_p -unbounded for $p \neq 2$.

The same applies to any domain Ω with nonflat smooth boundary $\partial \Omega$

▲ロト ▲園ト ▲ヨト ▲ヨト - ヨ - のへで

Let (G, μ) be a (unimodular) Lie group with $\lambda : G \to \mathcal{U}(L_2(G, \mu))$ given by $[\lambda(g)\varphi](h) = \varphi(g^{-1}h).$

▲□▶ ▲□▶ ▲□▶ ▲□▶ = = - のへで

Let (G, μ) be a (unimodular) Lie group with $\lambda : G \to \mathcal{U}(L_2(G, \mu))$ given by $[\lambda(g)\varphi](h) = \varphi(g^{-1}h).$

Define its group von Neumann algebra as follows

$$\mathcal{L}\mathbf{G} := \overline{\operatorname{span}\left\{f = \int_{\mathbf{G}} \widehat{f}(g)\lambda(g) \, d\mu(g) : \widehat{f} \in \mathcal{C}_{\mathbf{c}}(\mathbf{G})\right\}} \overset{\mathrm{w}}{\subset} \mathcal{B}(L_{2}(\mathbf{G},\mu)).$$

If $e =$ unit in \mathbf{G} , the Haar trace τ is then determined by $\tau(f) = \widehat{f}(e)$.

Let (G, μ) be a (unimodular) Lie group with $\lambda : G \to \mathcal{U}(L_2(G, \mu))$ given by $[\lambda(g)\varphi](h) = \varphi(g^{-1}h).$

Define its group von Neumann algebra as follows

$$\mathcal{L}G := \overline{\operatorname{span}\left\{f = \int_{G} \widehat{f}(g)\lambda(g) \, d\mu(g) : \widehat{f} \in \mathcal{C}_{c}(G)\right\}}^{w} \subset \mathcal{B}(L_{2}(G,\mu)).$$

If $e =$ unit in G, the Haar trace τ is then determined by $\tau(f) = \widehat{f}(e)$.

< ロ > < 同 > < 三 > < 三 > < 三 > < ○ < ○ </p>

Given $m: G \to C$, its Fourier multiplier is the map $\widehat{T_m f}(g) = \tau(T_m f \lambda(g)^*) = m(g)\tau(f\lambda(g)^*) = m(g)\widehat{f}(g).$

Let (G, μ) be a (unimodular) Lie group with $\lambda : G \to \mathcal{U}(L_2(G, \mu))$ given by $[\lambda(g)\varphi](h) = \varphi(g^{-1}h).$

Define its group von Neumann algebra as follows

$$\mathcal{L}G := \overline{\operatorname{span}\left\{f = \int_{G} \widehat{f}(g)\lambda(g) \, d\mu(g) : \widehat{f} \in \mathcal{C}_{c}(G)\right\}}^{w} \subset \mathcal{B}(L_{2}(G,\mu)).$$

If $e =$ unit in G, the Haar trace τ is then determined by $\tau(f) = \widehat{f}(e)$.

Given $m : G \to C$, its Fourier multiplier is the map $\widehat{T_m f}(g) = \tau(T_m f \lambda(g)^*) = m(g)\tau(f \lambda(g)^*) = m(g)\widehat{f}(g).$

Pioneering work: Haagerup '79 + Cowling-Haagerup '85 L_p -theory: Strong efforts since 2010 – Junge, Mei, P, Ricard, de la Salle... Key in geometric group th, functional+harmonic analysis, operator algebras...

What are Schur multipliers?

If $M : \{1, 2, ..., n\}^2 \to \mathbf{C}$, define $S_M(A) := \left(M(j, k) A_{j,k} \right)_{j,k} \quad \text{for any} \quad A \in M_n.$ If $M : \mathbf{Z} \times \mathbf{Z} \to \mathbf{C}$, define S_M for infinite matrices $A \in \mathcal{B}(\ell_2(\mathbf{Z})).$

▲□▶ ▲□▶ ▲□▶ ▲□▶ = = - のへで

What are Schur multipliers?

If $M : \{1, 2, ..., n\}^2 \to \mathbf{C}$, define $S_M(A) := \left(M(j, k)A_{j,k}\right)_{j,k}$ for any $A \in M_n$. If $M : \mathbf{Z} \times \mathbf{Z} \to \mathbf{C}$, define S_M for infinite matrices $A \in \mathcal{B}(\ell_2(\mathbf{Z}))$. If $M : \Omega \times \Omega \to \mathbf{C}$ and $T \in \mathcal{B}(L_2(\Omega, \mu))$ admits a kernel K, define $S_M(T)f(x) = \int_{\Omega} M(x, y)K(x, y)f(y)d\mu(y)$.

No worries: Operator with kernel are dense in the relevant topologies!

What are Schur multipliers?

If $M : \{1, 2, ..., n\}^2 \to \mathbf{C}$, define $S_M(A) := \left(M(j, k)A_{j,k}\right)_{j,k}$ for any $A \in M_n$. If $M : \mathbf{Z} \times \mathbf{Z} \to \mathbf{C}$, define S_M for infinite matrices $A \in \mathcal{B}(\ell_2(\mathbf{Z}))$. If $M : \Omega \times \Omega \to \mathbf{C}$ and $T \in \mathcal{B}(L_2(\Omega, \mu))$ admits a kernel K, define $S_M(T)f(x) = \int_{\Omega} M(x, y)K(x, y)f(y)d\mu(y)$.

No worries: Operator with kernel are dense in the relevant topologies!

Besides Fourier multipliers: Which $M : \mathbf{R}^n \times \mathbf{R}^n \to \mathbf{C}$ satisfy $\|S_M(A)\|_{S_p(\mathbf{R}^n)} = \operatorname{tr}\left(\left(S_M(A)^*S_M(A)\right)^{\frac{p}{2}}\right)^{\frac{1}{p}} \leq C_p \|A\|_{S_p(\mathbf{R}^n)}?$

Or more generally, same the problem with $M : G \times G \rightarrow C$ instead.

In \mathbf{R}^n , we may consider **Toeplitz symbols**

M(x,y) = m(x-y).

In \mathbf{R}^n , we may consider **Toeplitz symbols**

$$M(x,y) = m(x-y).$$

In ${\rm G},$ these are called Herz-Schur multipliers

$$S_m(A) = \left(m(gh^{-1})A_{gh}\right) \quad \text{for} \quad A \in \mathcal{B}(L_2(\mathbf{G},\mu)).$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● のへで

In \mathbf{R}^n , we may consider **Toeplitz symbols**

$$M(x,y) = m(x-y).$$

In ${\rm G},$ these are called Herz-Schur multipliers

$$S_m(A) = \left(m(gh^{-1})A_{gh}\right)$$
 for $A \in \mathcal{B}(L_2(\mathbf{G},\mu)).$

Fourier-Schur transference (2011/2015)

If $1 \le p \le \infty$

$$\left\|S_m: S_p(\mathbf{R}^n) \to S_p(\mathbf{R}^n)\right\|_{\mathsf{cb}} = \left\|T_m: L_p(\mathbf{R}^n) \to L_p(\mathbf{R}^n)\right\|_{\mathsf{cb}}.$$

Moreover, a similar result holds for multipliers in amenable groups.

In \mathbf{R}^n , we may consider **Toeplitz symbols**

$$M(x,y) = m(x-y).$$

In ${\rm G},$ these are called Herz-Schur multipliers

$$S_m(A) = \left(m(gh^{-1})A_{gh}\right)$$
 for $A \in \mathcal{B}(L_2(\mathbf{G},\mu)).$

Fourier-Schur transference (2011/2015)

If $1 \leq p \leq \infty$

$$\left\|S_m: S_p(\mathbf{R}^n) \to S_p(\mathbf{R}^n)\right\|_{\mathsf{cb}} = \left\|T_m: L_p(\mathbf{R}^n) \to L_p(\mathbf{R}^n)\right\|_{\mathsf{cb}}.$$

Moreover, a similar result holds for multipliers in amenable groups.

The logic of this result is based on...

$$L_{\infty}(\mathbf{T}) \ni f = \sum_{n \in \mathbf{Z}} \widehat{f}(n) e^{2\pi i n \cdot} \mapsto \left(\widehat{f}(j-k)\right)_{j,k} \in \mathcal{B}(\ell_2(\mathbb{Z})).$$

イロト 人間 ト イヨト イヨト

ъ

Sac

NonToeplitz Schur multipliers

Arbitrary Schur multipliers in $\mathbf{R}^n \rightsquigarrow M(x,y) \neq m(x-y)...$

NonToeplitz Schur multipliers

Arbitrary Schur multipliers in $\mathbf{R}^n \rightsquigarrow M(x,y) \neq m(x-y)...$

The Grothendieck-Haagerup characterization

 S_M is bounded on $\mathcal{B}(L_2(\mathbf{X}))$ iff S_M is cb-bounded if and only if there exists a Hilbert space \mathcal{K} and uniformly bounded (measurable) families (u_x) and (w_y) in \mathcal{K} satisfying $M(x, y) = \langle u_x, w_y \rangle_{\mathcal{K}}$ for a.e. $x, y \in \mathbf{X}$.

うして ふゆ アメリア トレー ひゃく

NonToeplitz Schur multipliers

Arbitrary Schur multipliers in $\mathbf{R}^n \rightsquigarrow M(x,y) \neq m(x-y)...$

The Grothendieck-Haagerup characterization

 S_M is bounded on $\mathcal{B}(L_2(\mathbf{X}))$ iff S_M is cb-bounded if and only if there exists a Hilbert space \mathcal{K} and uniformly bounded (measurable) families (u_x) and (w_y) in \mathcal{K} satisfying $M(x,y) = \langle u_x, w_y \rangle_{\mathcal{K}}$ for a.e. $x, y \in \mathbf{X}$.

When 1 , sufficient regularity conditions are the following...

Hörmander-Mikhlin-Schur multipliers – CGPT 2023

$$\left\|S_M\right\|_{\operatorname{cb}(S_p(\mathbf{R}^n))} \lesssim \sum_{|\gamma| \leq [\frac{n}{2}]+1} \left\||x-y|^{|\gamma|} \left\{ \left|\partial_x^{\gamma} M(x,y)\right| + \left|\partial_y^{\gamma} M(x,y)\right| \right\} \right\|_{\infty}$$

Marcinkiewicz thm for Schur multipliers - Yeong-Liu-Mei 2023

$$\left\|S_M\right\|_{\operatorname{cb}(S_p(\mathbf{Z}))} \lesssim \sup_{\substack{j \in \mathbf{Z} \\ \mathcal{J} \in \mathcal{D}(\mathbf{Z})}} \operatorname{Var}_{\mathcal{J}}\left(M(j+\cdot,j)\right) + \operatorname{Var}_{\mathcal{J}}\left(M_{(j,j+\cdot)}\right)$$

Spherical Hilbert transforms

Let $H_{\mathbf{S}}$ be the Schur multiplier with symbol

$$\mathbf{S}^n \times \mathbf{S}^n \ni (x, y) \mapsto \frac{1}{2} (1 + \operatorname{sgn}\langle x, y \rangle) = \chi_{\langle x, y \rangle > 0}.$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● のへで

Spherical Hilbert transforms

Let $H_{\mathbf{S}}$ be the Schur multiplier with symbol

$$\mathbf{S}^n \times \mathbf{S}^n \ni (x, y) \mapsto \frac{1}{2} (1 + \operatorname{sgn} \langle x, y \rangle) = \chi_{\langle x, y \rangle > 0}.$$

Lafforgue/de la Salle 2011 — If |1/2 - 1/p| > 1/2n, H_S is S_p -unbded Motivation: Are spherical Hilbert transforms S_p -bded for any $p \neq 2$?

Spherical Hilbert transforms

Let $H_{\mathbf{S}}$ be the Schur multiplier with symbol

$$\mathbf{S}^n \times \mathbf{S}^n \ni (x, y) \mapsto \frac{1}{2} (1 + \operatorname{sgn}\langle x, y \rangle) = \chi_{\langle x, y \rangle > 0}.$$

Lafforgue/de la Salle 2011 — If |1/2 - 1/p| > 1/2n, H_S is S_p -unbded Motivation: Are spherical Hilbert transforms S_p -bded for any $p \neq 2$?

Fourier idempotents on Lie groups

Let G be a connected Lie group and 1 :

- Which smooth domains Ω give $T_{\chi_{\Omega}}: L_p(\mathcal{L}G) \to L_p(\mathcal{L}G)$?
- Is there a geometric characterization? A group theoretic one?

This is part of a longstanding search for Fourier L_p -idempotents.

Our main results below give complete answers to the above problems...

Schur idempotents Local geometry and analytic form

◆ロト ◆御ト ◆注ト ◆注ト 注 のへで

Let $\Sigma \subset \mathbf{R}^n \times \mathbf{R}^n$ be a \mathcal{C}^1 -domain.

Given $(x, y) \in \partial \Sigma$, set $\mathbf{n}(x, y) = (\mathbf{n}_1(x, y), \mathbf{n}_2(x, y)) \perp \partial \Sigma$ at (x, y).

A point $(x, y) \in \partial \Sigma$ is called **transverse** when both $\mathbf{n}_1, \mathbf{n}_2$ are nonzero.

Let $\Sigma \subset \mathbf{R}^n \times \mathbf{R}^n$ be a \mathcal{C}^1 -domain. Given $(x, y) \in \partial \Sigma$, set $\mathbf{n}(x, y) = (\mathbf{n}_1(x, y), \mathbf{n}_2(x, y)) \perp \partial \Sigma$ at (x, y). A point $(x, y) \in \partial \Sigma$ is called **transverse** when both $\mathbf{n}_1, \mathbf{n}_2$ are nonzero.

Theorem A (Schur idempotents)

Given $1 , TFAE for any transverse <math>(x_0, y_0) \in \partial \Sigma$:

I S_p -boundedness. The Schur idempotent S_{Σ} whose symbol equals 1 on Σ and 0 elsewhere is bounded on $S_p(L_2(U), L_2(V))$ for some pair of neighbourhoods U, V of x_0, y_0 in \mathbb{R}^n .

Let $\Sigma \subset \mathbf{R}^n \times \mathbf{R}^n$ be a \mathcal{C}^1 -domain. Given $(x, y) \in \partial \Sigma$, set $\mathbf{n}(x, y) = (\mathbf{n}_1(x, y), \mathbf{n}_2(x, y)) \perp \partial \Sigma$ at (x, y). A point $(x, y) \in \partial \Sigma$ is called **transverse** when both $\mathbf{n}_1, \mathbf{n}_2$ are nonzero.

Theorem A (Schur idempotents)

Given $1 , TFAE for any transverse <math>(x_0, y_0) \in \partial \Sigma$:

- **I** S_p -boundedness. The Schur idempotent S_{Σ} whose symbol equals 1 on Σ and 0 elsewhere is bounded on $S_p(L_2(U), L_2(V))$ for some pair of neighbourhoods U, V of x_0, y_0 in \mathbb{R}^n .
- **2** Zero-curvature condition. There are neighbourhoods U, V of the points x_0, y_0 such that the vectors $\mathbf{n}_2(x_1, y)$, $\mathbf{n}_2(x_2, y)$ are parallel for any pair of points $(x_1, y), (x_2, y) \in \partial \Sigma \cap (U \times V)$.

Let $\Sigma \subset \mathbf{R}^n \times \mathbf{R}^n$ be a \mathcal{C}^1 -domain. Given $(x, y) \in \partial \Sigma$, set $\mathbf{n}(x, y) = (\mathbf{n}_1(x, y), \mathbf{n}_2(x, y)) \perp \partial \Sigma$ at (x, y). A point $(x, y) \in \partial \Sigma$ is called **transverse** when both $\mathbf{n}_1, \mathbf{n}_2$ are nonzero.

Theorem A (Schur idempotents)

Given $1 , TFAE for any transverse <math>(x_0, y_0) \in \partial \Sigma$:

- **1** S_p -boundedness. The Schur idempotent S_{Σ} whose symbol equals 1 on Σ and 0 elsewhere is bounded on $S_p(L_2(U), L_2(V))$ for some pair of neighbourhoods U, V of x_0, y_0 in \mathbb{R}^n .
- **2** Zero-curvature condition. There are neighbourhoods U, V of the points x_0, y_0 such that the vectors $\mathbf{n}_2(x_1, y)$, $\mathbf{n}_2(x_2, y)$ are parallel for any pair of points $(x_1, y), (x_2, y) \in \partial \Sigma \cap (U \times V)$.
- **B** Triangular truncation representation. There are neighbourhoods U, V of x_0, y_0 and \mathcal{C}^1 -functions $f_1 : U \to \mathbf{R}$ and $f_2 : V \to \mathbf{R}$, such that the domain $\Sigma \cap (U \times V) = \{(x, y) \in U \times V : f_1(x) > f_2(y)\}.$

Theorem A (Schur idempotents)

Given $1 , TFAE for any transverse <math>(x_0, y_0) \in \partial \Sigma$:

- **I** S_p -boundedness. S_{Σ} is S_p -bded in a box $U \times V$ of (x_0, y_0) .
- **2** Zero-curvature condition. $\mathbf{n}_2(x_1, y) \| \mathbf{n}_2(x_2, y)$ around (x_0, y_0) .
- **B** Triangular representation. $\Sigma = \{f_1(x) > f_2(y)\}$ around (x_0, y_0) .

・ロト ・ 日 ・ ・ ヨ ・ ・ 日 ・ うへつ

Theorem A (Schur idempotents)

Given $1 , TFAE for any transverse <math>(x_0, y_0) \in \partial \Sigma$:

- **I** S_p -boundedness. S_{Σ} is S_p -bded in a box $U \times V$ of (x_0, y_0) .
- **2** Zero-curvature condition. $\mathbf{n}_2(x_1, y) \| \mathbf{n}_2(x_2, y)$ around (x_0, y_0) .
- **B** Triangular representation. $\Sigma = \{f_1(x) > f_2(y)\}$ around (x_0, y_0) .

Fefferman's Fourier framework corresponds to

$$\Sigma = \left\{ (x, y) : x - y \in \Omega \right\} \quad \text{for some Euclidean domain } \Omega.$$
It is fully transverse & explains why transversality is a new condition

・ロト ・ 日 ・ ・ ヨ ・ ・ 日 ・ うへつ

Theorem A (Schur idempotents)

Given $1 , TFAE for any transverse <math>(x_0, y_0) \in \partial \Sigma$:

- **I** S_p -boundedness. S_{Σ} is S_p -bded in a box $U \times V$ of (x_0, y_0) .
- **2** Zero-curvature condition. $\mathbf{n}_2(x_1, y) \| \mathbf{n}_2(x_2, y)$ around (x_0, y_0) .
- **B** Triangular representation. $\Sigma = \{f_1(x) > f_2(y)\}$ around (x_0, y_0) .

Fefferman's Fourier framework corresponds to

$$\Sigma = \left\{ (x, y) : x - y \in \Omega \right\} \quad \text{for some Euclidean domain } \Omega.$$
It is fully transverse & explains why transversality is a new condition

Theorem A holds for differentiable manifolds $M \times N$. This is quite remarkable, since Schur multipliers on general manifolds lack to admit a Fourier transform connection.

Zero-curvature for C^2 -domains

Let Σ be a C^2 -domain:

 $\Sigma \cap (U \times V) = \left\{ (x,y) : F(x,y) > 0 \right\} \text{ for some } F \in \mathcal{C}^2(\mathbf{R}^n \times \mathbf{R}^n).$

Equivalent curvature condition for C^2 -domains

$$\begin{split} \left\langle d_x d_y F(x,y), u \otimes v \right\rangle &:= u^{\mathrm{t}} \cdot \left(\partial_{x_j} \partial_{y_k} F(x,y) \right)_{j,k} \cdot v = 0 \\ \text{for all } (x,y) \in \partial \Sigma \cap (U \times V) \ \& \ (u,v) \in \ker d_x F(x,y) \times \ker d_y F(x,y). \end{split}$$

うして ふゆ てん かん きょう うんの

Zero-curvature for C^2 -domains

Let Σ be a C^2 -domain:

for

 $\Sigma \cap (U \times V) = \left\{ (x,y) : F(x,y) > 0 \right\} \text{ for some } F \in \mathcal{C}^2(\mathbf{R}^n \times \mathbf{R}^n).$

Equivalent curvature condition for C^2 -domains

$$\begin{split} \left\langle d_x d_y F(x,y), u \otimes v \right\rangle &:= u^{\mathrm{t}} \cdot \left(\partial_{x_j} \partial_{y_k} F(x,y) \right)_{j,k} \cdot v = 0 \\ \text{all } (x,y) \in \partial \Sigma \cap (U \times V) \ \& \ (u,v) \in \ker d_x F(x,y) \times \ker d_y F(x,y). \end{split}$$

Vanishing forms of $d_{xx}F$ or $d_{yy}F$: Not valid since

$$\Sigma_{\mathbf{r}} = \{(x, y) : x \in \Omega\}$$
 and $\Sigma_{\mathbf{c}} = \{(x, y) : y \in \Omega\}$

うして ふゆ てん かん きょう うんの

lead to S_p -bounded multipliers with no geometric restrictions on Ω .

Zero-curvature for C^2 -domains

Let Σ be a C^2 -domain:

for

 $\Sigma \cap (U \times V) = \left\{ (x,y) : F(x,y) > 0 \right\} \text{ for some } F \in \mathcal{C}^2(\mathbf{R}^n \times \mathbf{R}^n).$

Equivalent curvature condition for C^2 -domains

$$\begin{split} \left\langle d_x d_y F(x,y), u \otimes v \right\rangle &:= u^{\mathrm{t}} \cdot \left(\partial_{x_j} \partial_{y_k} F(x,y) \right)_{j,k} \cdot v = 0 \\ \text{all } (x,y) \in \partial \Sigma \cap (U \times V) \ \& \ (u,v) \in \ker d_x F(x,y) \times \ker d_y F(x,y). \end{split}$$

Vanishing forms of $d_{xx}F$ or $d_{yy}F$: Not valid since

$$\Sigma_{\mathbf{r}} = \{(x, y) : x \in \Omega\}$$
 and $\Sigma_{\mathbf{c}} = \{(x, y) : y \in \Omega\}$

lead to S_p -bounded multipliers with no geometric restrictions on Ω .

 C^2 -curvature is (x, y)-symmetric. This holds as well for C^1 -domains by Theorem A. Stein's rotational curvature det $[d_x d_y F(x, y)]$ is similar.

Examples and nonexamples I

Thm A holds globally for fully transverse relatively compact domains

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● のへで

Thm A holds globally for fully transverse relatively compact domains

 Fefferman's theorem ⇒ No smooth compact Fourier idempotents. However, there are plenty of such (nonToeplitz) Schur idempotents. A funny instance is other form of **ball multiplier**

$$\Sigma_R = \left\{ (x, y) \in \mathbf{R}^n \times \mathbf{R}^n \colon |x|^2 + |y|^2 < R^2 \right\}.$$

These are clearly S_p -bounded by condition (3) in Theorem A. By our lax notion of ∂ -flatness: Spheres $\partial \Sigma_R$ have **zero-curvature**!

Thm A holds globally for fully transverse relatively compact domains

 Fefferman's theorem ⇒ No smooth compact Fourier idempotents. However, there are plenty of such (nonToeplitz) Schur idempotents. A funny instance is other form of **ball multiplier**

$$\Sigma_R = \left\{ (x, y) \in \mathbf{R}^n \times \mathbf{R}^n \colon |x|^2 + |y|^2 < R^2 \right\}.$$

These are clearly S_p -bounded by condition (3) in Theorem A. By our lax notion of ∂ -flatness: Spheres $\partial \Sigma_R$ have **zero-curvature**!

• Relative compactness is crucial at this point. Indeed, any fully transverse C^1 -domain of $\mathbf{R} \times \mathbf{R}$ trivially satisfies the zero-curvature condition at every boundary point. But there are Toeplitz examples of such domains arising from Fourier symbols that do not define an S_p -multiplier for any $p \neq 2$: Just pick $\Omega \subset \mathbf{R}$ with $T_{\chi\Omega} L_p$ -unbded.

Examples and nonexamples II

Let $-1 < \delta < 1$ and

$$H_{\mathbf{S},\delta}(A) = \left(\chi_{\langle x,y\rangle > \delta} A_{xy}\right)_{x,y \in \mathbf{S}^n}$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● のへで

Examples and nonexamples II

Let $-1 < \delta < 1$ and $H_{\mathbf{S},\delta}(A) = \Big(\chi_{\langle x,y \rangle > \delta} A_{xy}\Big)_{x,y \in \mathbf{S}^n}$

Corollary A (Spherical Hilbert transforms)

If 1 , the*n* $-dimensional spherical Hilbert transforms <math>H_{\mathbf{S},\delta}$ are all S_p -bounded for n = 1 and S_p -unbounded for $n \ge 2$ and $|\delta| < 1$.

うして ふゆ てん かん きょう うんの

Examples and nonexamples II

Let $-1 < \delta < 1$ and $H_{\mathbf{S},\delta}(A) = \Big(\chi_{\langle x,y \rangle > \delta} A_{xy}\Big)_{x,y \in \mathbf{S}^n}$

Corollary A (Spherical Hilbert transforms)

If 1 , the*n* $-dimensional spherical Hilbert transforms <math>H_{\mathbf{S},\delta}$ are all S_p -bounded for n = 1 and S_p -unbounded for $n \ge 2$ and $|\delta| < 1$.

Failure of zero-curvature for spherical Hilbert transforms $H_{\mathbf{S},\delta}$ Here $H_{\mathbf{S},\delta} = S_{\Sigma}$ with $\Sigma = \{(x,y) \in \mathbf{S}^n \times \mathbf{S}^n : \langle x, y \rangle > \delta\}$ for n = 2.

▲□▶ ▲圖▶ ▲≣▶ ▲≣▶ = = -の�?

Fourier idempotents Three Hilbert transforms on Lie groups

◆ロト ◆御ト ◆注ト ◆注ト 注 のへで

Semispaces and (finite or lacunary) combinations of them.

Semispaces and (finite or lacunary) combinations of them.

Free groups

Bożejko-Fendler 2006: Balls in the Cayley graph – Not uniformly bded Mei-Ricard 2017: Free Hilbert transforms via a NC Cotlar-type identity

Semispaces and (finite or lacunary) combinations of them.

Free groups

Bożejko-Fendler 2006: Balls in the Cayley graph – Not uniformly bded Mei-Ricard 2017: Free Hilbert transforms via a NC Cotlar-type identity

Crossed products

P-Rogers 2016: Twisted Hilbert transforms $H_u \rtimes id$ over $\mathbb{R}^n \rtimes G$ $H_u \rtimes id L_p$ -bounded if and only if the orbit $\{g \cdot u : g \in G\}$ is finite

Semispaces and (finite or lacunary) combinations of them.

Free groups

Bożejko-Fendler 2006: Balls in the Cayley graph – Not uniformly bded Mei-Ricard 2017: Free Hilbert transforms via a NC Cotlar-type identity

Crossed products

P-Rogers 2016: Twisted Hilbert transforms $H_u \rtimes id$ over $\mathbb{R}^n \rtimes G$ $H_u \rtimes id L_p$ -bounded if and only if the orbit $\{g \cdot u : g \in G\}$ is finite

Other locally compact groups

González-P-Xia 2022: More Hilbert transforms and Cotlar identities

Semispaces and (finite or lacunary) combinations of them.

Free groups

Bożejko-Fendler 2006: Balls in the Cayley graph – Not uniformly bded Mei-Ricard 2017: Free Hilbert transforms via a NC Cotlar-type identity

Crossed products

P-Rogers 2016: Twisted Hilbert transforms $H_u \rtimes id$ over $\mathbb{R}^n \rtimes G$ $H_u \rtimes id L_p$ -bounded if and only if the orbit $\{g \cdot u : g \in G\}$ is finite

Other locally compact groups

González-P-Xia 2022: More Hilbert transforms and Cotlar identities

How do Fourier L_p -idempotents look for arbitrary Lie groups?

Theorem B1 (Fourier idempotents)

Let G be a connected Lie group. Let $\Omega \subset G$ a C^1 -domain and $g_0 \in \partial \Omega$. Then, TFAE for every 1 :

- χ_{Ω} defines locally at g_0 a Fourier cb- L_p -multiplier.
- $\partial \Omega = g_0 \exp(\mathfrak{h})$ around g_0 ($\mathfrak{h} = \operatorname{codim-1}$ Lie subalgebra).

・ロト ・ 日 ・ ・ ヨ ・ ・ 日 ・ うへつ

Theorem B1 (Fourier idempotents)

Let G be a connected Lie group. Let $\Omega \subset G$ a C^1 -domain and $g_0 \in \partial \Omega$. Then, TFAE for every 1 :

- χ_{Ω} defines locally at g_0 a Fourier cb- L_p -multiplier.
- $\partial \Omega = g_0 \exp(\mathfrak{h})$ around g_0 ($\mathfrak{h} = \operatorname{codim-1}$ Lie subalgebra).

If ${\rm G}$ is simply connected, this is also equivalent to:

• There is a smooth action $\mathrm{G} \to \mathrm{diff}(\mathbf{R})$ such that

 $\Omega = \left\{ g \in \mathcal{G} \mid g \cdot 0 > g_0 \cdot 0 \right\} \text{ around } g_0.$

・ロト ・ 日 ・ ・ ヨ ・ ・ 日 ・ うへつ

Theorem B1 (Fourier idempotents)

Let G be a connected Lie group. Let $\Omega \subset G$ a C^1 -domain and $g_0 \in \partial \Omega$. Then, TFAE for every 1 :

- χ_{Ω} defines locally at g_0 a Fourier cb- L_p -multiplier.
- $\partial \Omega = g_0 \exp(\mathfrak{h})$ around g_0 ($\mathfrak{h} = \operatorname{codim-1}$ Lie subalgebra).

If ${\rm G}$ is simply connected, this is also equivalent to:

• There is a smooth action $G \to diff(\mathbf{R})$ such that

 $\Omega = \left\{ g \in \mathcal{G} \mid g \cdot 0 > g_0 \cdot 0 \right\} \text{ around } g_0.$

うして ふゆ てん かん きょう うんの

This unravels what is "Fourier boundary flatness" for Lie groups

Consider:

- i) The real line $G_1 = \mathbf{R}$ with $\Omega_1 = (0, \infty)$.
- ii) The affine group $G_2 = Aff_+(\mathbf{R})$ and $\Omega_2 = \{ax + b : b > 0\}.$
- iii) The universal covering $G_3 = \widetilde{PSL}_2(\mathbf{R})$ and $\Omega_3 = \{g : \alpha_g(0) > 0\}$. $\alpha : \widetilde{PSL}_2(\mathbf{R}) \curvearrowright \mathbf{R}$ by lifting standard action $\operatorname{PSL}_2(\mathbf{R}) \curvearrowright P1(\mathbf{R})$ to universal covers.

Consider:

- i) The real line $G_1 = \mathbf{R}$ with $\Omega_1 = (0, \infty)$.
- ii) The affine group $G_2 = Aff_+(\mathbf{R})$ and $\Omega_2 = \{ax + b : b > 0\}.$
- iii) The universal covering $G_3 = \widetilde{PSL}_2(\mathbf{R})$ and $\Omega_3 = \{g : \alpha_g(0) > 0\}$. $\alpha : \widetilde{PSL}_2(\mathbf{R}) \curvearrowright \mathbf{R}$ by lifting standard action $\operatorname{PSL}_2(\mathbf{R}) \curvearrowright P1(\mathbf{R})$ to universal covers.

Lie's classification implies the following interesting consequence:

Theorem B2 (Fourier idempotents)

Let G be simply connected and Ω, p, g_0 as above. Then, TFAE:

- χ_{Ω} defines locally at g_0 a Fourier cb- L_p -multiplier.
- $\Omega = g_0 f^{-1}(\Omega_j)$ near g_0 for a surject hom $f: \mathbf{G} \to \mathbf{G}_j \& 1 \le j \le 3$.

うして ふゆ てん かん きょう うんの

Consider:

- i) The real line $G_1 = \mathbf{R}$ with $\Omega_1 = (0, \infty)$.
- ii) The affine group $G_2 = Aff_+(\mathbf{R})$ and $\Omega_2 = \{ax + b : b > 0\}.$
- iii) The universal covering $G_3 = PSL_2(\mathbf{R})$ and $\Omega_3 = \{g : \alpha_g(0) > 0\}$. $\alpha : \widetilde{PSL}_2(\mathbf{R}) \curvearrowright \mathbf{R}$ by lifting standard action $PSL_2(\mathbf{R}) \curvearrowright P1(\mathbf{R})$ to universal covers.

Lie's classification implies the following interesting consequence:

Theorem B2 (Fourier idempotents)

Let G be simply connected and Ω, p, g_0 as above. Then, TFAE:

- χ_{Ω} defines locally at g_0 a Fourier cb- L_p -multiplier.
- $\Omega = g_0 f^{-1}(\Omega_j)$ near g_0 for a surject hom $f: \mathbf{G} \to \mathbf{G}_j \& 1 \le j \le 3$.

Just **three Hilbert transforms** on Lie groups: Others = '**Directional**'

Corollary B3 (Nilpotent and Simple Lie groups)

Fourier cb- L_p -idempotents for 1 :

- i) Simply connected nilpotent Lie groups They are locally = $H \circ \varphi$ for $\varphi : G \rightarrow \mathbf{R}$ smooth hom.
- ii) Simple Lie groups not locally isomorphic to $SL_2(\mathbf{R})$ These groups do not carry Fourier cb- L_p -idempotents at all.
- iii) Other Lie groups which are locally isomorphic to $SL_2(\mathbf{R})$ Unique local Fourier cb- L_p -idempotent up to left/right translation.

・ロト ・ 日 ・ ・ ヨ ・ ・ 日 ・ うへつ

Corollary B3 (Nilpotent and Simple Lie groups)

Fourier cb- L_p -idempotents for 1 :

- i) Simply connected nilpotent Lie groups They are locally = $H \circ \varphi$ for $\varphi : G \rightarrow \mathbf{R}$ smooth hom.
- ii) Simple Lie groups not locally isomorphic to $SL_2(\mathbf{R})$ These groups do not carry Fourier cb- L_p -idempotents at all.
- iii) Other Lie groups which are locally isomorphic to $SL_2(\mathbf{R})$ Unique local Fourier cb- L_p -idempotent up to left/right translation.

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Stratified Lie groups: The φ above projects onto first stratum

Corollary B3 (Nilpotent and Simple Lie groups)

Fourier cb- L_p -idempotents for 1 :

- i) Simply connected nilpotent Lie groups They are locally = $H \circ \varphi$ for $\varphi : G \rightarrow \mathbf{R}$ smooth hom.
- ii) Simple Lie groups not locally isomorphic to $SL_2(\mathbf{R})$ These groups do not carry Fourier cb- L_p -idempotents at all.
- iii) Other Lie groups which are locally isomorphic to $SL_2(\mathbf{R})$ Unique local Fourier cb- L_p -idempotent up to left/right translation.

Stratified Lie groups: The φ above projects onto first stratum

$$SL_2(\mathbf{R})$$
 vs $SL_2(\mathbf{Z})$: $\begin{pmatrix} a & b \\ c & d \end{pmatrix} \mapsto \operatorname{sgn}(ac+bd)$ is L_p -unbounded!

Thank you!!

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● のへで

Ingredients of the proofs

◆ロト ◆御ト ◆注ト ◆注ト 注 のへで

Schur idempotents

Lemma A1 (Schur amplification of Meyer's lemma)

Assume $\partial \Sigma$ transverse in $U \times V$ and $S_{\Sigma} \in \mathcal{B}(S_p(L_2(U), L_2(V)))$. Given $z_j = (x_j, y) \in \partial \Sigma \cap (U \times V)$, $u_j = \mathbf{n}_2(z_j)$ and $f_j \in L_p(\mathbf{R}^n)$: $\left\| \left(\sum_j \left| H_{u_j}(f_j) \right|^2 \right)^{\frac{1}{2}} \right\|_{L_p(\mathbf{R}^n)} \lesssim \left\| \left(\sum_j |f_j|^2 \right)^{\frac{1}{2}} \right\|_{L_p(\mathbf{R}^n)}$.

・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・

Sac

Schur idempotents

Lemma A1 (Schur amplification of Meyer's lemma)

Assume $\partial \Sigma$ transverse in $U \times V$ and $S_{\Sigma} \in \mathcal{B}(S_p(L_2(U), L_2(V)))$. Given $z_j = (x_j, y) \in \partial \Sigma \cap (U \times V)$, $u_j = \mathbf{n}_2(z_j)$ and $f_j \in L_p(\mathbf{R}^n)$: $\left\| \left(\sum_j |H_{u_j}(f_j)|^2 \right)^{\frac{1}{2}} \right\|_{L_p(\mathbf{R}^n)} \lesssim \left\| \left(\sum_j |f_j|^2 \right)^{\frac{1}{2}} \right\|_{L_p(\mathbf{R}^n)}$. Lemma A2 (Local normal form of transverse hypersurfaces) If $(x_0, y_0) \in \partial \Sigma$ is transverse, there are local diffeomorphisms st $\phi(x_0) = \psi(y_0) = 0$ and $\phi \times \psi(\Sigma) = \left\{ ((s, \tilde{x}), y) : s > g(\tilde{x}, y) \right\}$ for some $g \in \mathcal{C}^1(\mathbf{R}^{n-1} \times \mathbf{R}^n)$ satisfying $g(0, y) = \langle y, e_1 \rangle$ for every y.

Schur idempotents

Lemma A1 (Schur amplification of Meyer's lemma)

Assume $\partial \Sigma$ transverse in $U \times V$ and $S_{\Sigma} \in \mathcal{B}(S_p(L_2(U), L_2(V)))$. Given $z_j = (x_j, y) \in \partial \Sigma \cap (U \times V)$, $u_j = \mathbf{n}_2(z_j)$ and $f_j \in L_p(\mathbf{R}^n)$: $\left\| \left(\sum_j \left| H_{u_j}(f_j) \right|^2 \right)^{\frac{1}{2}} \right\|_{L_p(\mathbf{R}^n)} \lesssim \left\| \left(\sum_j \left| f_j \right|^2 \right)^{\frac{1}{2}} \right\|_{L_p(\mathbf{R}^n)}$.

Lemma A2 (Local normal form of transverse hypersurfaces)

If $(x_0, y_0) \in \partial \Sigma$ is transverse, there are local diffeomorphisms st $\phi(x_0) = \psi(y_0) = 0$ and $\phi \times \psi(\Sigma) = \left\{ \left((s, \tilde{x}), y \right) : s > g(\tilde{x}, y) \right\}$ for some $g \in \mathcal{C}^1(\mathbf{R}^{n-1} \times \mathbf{R}^n)$ satisfying $g(0, y) = \langle y, e_1 \rangle$ for every y.

Lemma A3 (Measurable transformations of Schur S_p -multipliers)

Let $(X,\mu), (X',\mu')$ be atomless σ -finite and $f,g: X \to X'$ be measurable. Then, if $f_*\mu << \mu'$ and $m \in L_{\infty}(X' \times X')$, we obtain $\|m \circ (f \times g)\|_{MS_p(L_2(X,\mu))} = \|m\|_{MS_p(L_2(X',f_*\mu))} \le \|m\|_{MS_p(L_2(X',\mu'))}$

$\label{eq:product} \begin{array}{l} \mathsf{PRdIS'22-If}\ \mathrm{G}\ \mathrm{unimodular}\ \mathrm{and}\ p\in 2\mathbf{Z}\\ \mathsf{Fourier}\ \mathrm{and}\ \mathsf{Schur}\ \mathrm{multipliers}\ \mathrm{are}\ \mathrm{locally}\ \mathrm{the}\ \mathrm{same}. \end{array}$

 $\label{eq:product} \begin{array}{l} \mathsf{PRdIS'22-If}\ \mathrm{G}\ \mathrm{unimodular}\ \mathrm{and}\ p\in 2\mathbf{Z}\\ \mathsf{Fourier}\ \mathrm{and}\ \mathsf{Schur}\ \mathrm{multipliers}\ \mathrm{are}\ \mathrm{locally}\ \mathrm{the}\ \mathrm{same}. \end{array}$

The result below generalizes P-Ricard-de la Salle's local transference...

Theorem C (Local Fourier-Schur transference)

Let G be a locally compact group and consider a bounded measurable function $m : G \to C$. Then, TFAE for $g_0 \in G$ and every 1 :

- There is a neighbourhood U of g₀ such that the restriction of T_m to the space of elements of L_p(LG) Fourier supported by U is cb.
- There are open sets $V, W \subset G$ with $g_0 \in VW^{-1}$ such that the function $(g, h) \in V \times W \mapsto m(gh^{-1})$ is in $M_{\rm cb}S_p(L_2(V), L_2(W))$.

< ロ > < 同 > < 三 > < 三 > < 三 > < ○ < ○ </p>

 $\label{eq:product} \begin{array}{l} \mathsf{PRdIS'22-If}\ \mathrm{G}\ \text{unimodular and}\ p\in 2\mathbf{Z}\\ \mathsf{Fourier and}\ \mathsf{Schur}\ \mathsf{multipliers are locally the same}. \end{array}$

The result below generalizes P-Ricard-de la Salle's local transference...

Theorem C (Local Fourier-Schur transference)

Let G be a locally compact group and consider a bounded measurable function $m : G \to C$. Then, TFAE for $g_0 \in G$ and every 1 :

- There is a neighbourhood U of g₀ such that the restriction of T_m to the space of elements of L_p(LG) Fourier supported by U is cb.
- There are open sets $V, W \subset G$ with $g_0 \in VW^{-1}$ such that the function $(g, h) \in V \times W \mapsto m(gh^{-1})$ is in $M_{\rm cb}S_p(L_2(V), L_2(W))$.

Lie algebra analysis

Zero-curvature $\rightsquigarrow \partial \Omega = g_0 \exp(\mathfrak{h})$. Lie's classification of codim-1 Lie subalgebras \rightsquigarrow 3 Hilbert transforms

Is transversality essential in Theorem A?

(ロト (個) (E) (E) (E) (O) (O)

Is transversality essential in Theorem A?

Degenerate case $\mathbf{n}_1 \equiv 0$: $\Sigma = \{(x, y) : y \in \Omega\}$. Theorem A ok: S_p -bdness holds even for $1 \leq p \leq \infty$. WLOG {nontransverse pts} has no interior in $\partial \Sigma$ -topology.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Is transversality essential in Theorem A?

Degenerate case $\mathbf{n}_1 \equiv 0$: $\Sigma = \{(x, y) : y \in \Omega\}$. Theorem A ok: S_p -bdness holds even for $1 \leq p \leq \infty$. WLOG {nontransverse pts} has no interior in $\partial \Sigma$ -topology.

Isolated transverse points: No counterexamples so far. It is likely that such examples can be found, but not easily... Difficulty: Probably not for domains with analytic boundary.

シック・ ボー・ボー・ オー・ モー