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Fourier and Schur multipliers
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Hilbert transforms

Given m : G — C for some LCA group G, let T}, f = (mf)v be the
Fourier multiplier with symbol m. In the classical groups, we find that
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Hilbert transforms

Given m : G — C for some LCA group G, let T}, f = (mf)v be the
Fourier multiplier with symbol m. In the classical groups, we find that

Tnf(z) =Y m(k)f(k)z" or Tnf(z)= / m(§)F ()T de.

keZnr
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Fourier L,-summability

e Smooth case: Which m;’s give lim | f — Ty, f||, = 07
J]—00
e Partial Fourier summation: What if m; = xq, for domains ;7

e Euclidean dilation invariance: Which 2 make T, L,(R")-bded?

The Hilbert transform in R
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Fourier L,-summability works for dilations of a convex polyhedron II




The ball multiplier theorem
What about dilations of the unit ball B?

Original conjecture: T, is L,(R™)-bounded iff |1/p —1/2| < 1/2n.
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What about dilations of the unit ball B?

Original conjecture: T, is L,(R™)-bounded iff |1/p —1/2| < 1/2n.
Fefferman’s ball multiplier theorem (1971)

If n > 1, the ball multiplier is L,-unbounded for p # 2.
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Kakeya construction  Fefferman construction
The same applies to any domain 2 with nonflat smooth boundary OS2




Fourier multipliers over Lie groups
Let (G, i) be a (unimodular) Lie group with

A:G = U(L2(G, ) given by  [Ag)e](h)
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Let (G, i) be a (unimodular) Lie group with
A: G = U(Ly(G, ) given by [AMg)g](h) = @(g~'h).

Define its group von Neumann algebra as follows

£Gi=spun{f = [ FoNo)duly) T € €@} © BLalGon)

If e =unit in G, the Haar trace 7 is then determined by 7(f) = f(e).

Given m : G — C, its Fourier multiplier is the map

~

Tonf(9) = T(TmfA(9)*) = m(9)T(FA(9)*) = m(g) F(9)-

Pioneering work: Haagerup '79 + Cowling-Haagerup '85
Ly-theory: Strong efforts since 2010 — Junge, Mei, P, Ricard, de la Salle...

Key in geometric group th, functional+harmonic analysis, operator algebras...




What are Schur multipliers?
If M :{1,2,...,n}%> = C, define
Sr(A) == (M(j./ k)AjJC)

forany Ae M,.
ik
If M :Z x Z — C, define Sy for infinite matrices A € B(¢2(Z)).
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What are Schur multipliers?

If M :{1,2,...,n}%> = C, define

Su(4) = (M(, /~c)Aj,k>ng forany A€ M.
If M :Z x Z — C, define Sy for infinite matrices A € B({2(Z)).
If M :QxQ— CandT e B(L2(2, 1)) admits a kernel K, define

S (T) f(x) = /Q M(a, 9)K (2. 9) (9)du(y).

No worries: Operator with kernel are dense in the relevant topologies!

Besides Fourier multipliers:
Which M : R x R"™ — C satisfy

ps
18(A) |5, ey = tr((SM(A)*SM(A))§> P < CyllAlls,@m)?

Or more generally, same the problem with M : G x G — C instead.
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M(z,y) =m(x —y)
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Toeplitz symbols and Fourier multipliers

In R", we may consider Toeplitz symbols
M(z,y) = m(z —y).
In G, these are called Herz-Schur multipliers

Sy (A) = (m(gh—l)Agh) for A€ B(La(G, p)).

Fourier-Schur transference (2011/2015)
If1<p<oo

HSm : SP(Rn) — SP(Rn)ch - HTm : LP(Rn) — Lil’(Rn)ch'

Moreover, a similar result holds for multipliers in amenable groups.

The logic of this result is based on...

Loo(T) 3 f = Y Fme™ v (£ = )

neZ

€ B(l2(Z)).
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NonToeplitz Schur multipliers
Arbitrary Schur multipliers in R™ ~~ M (x,y) # m(z — y)...
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NonToeplitz Schur multipliers

Arbitrary Schur multipliers in R™ ~~ M (x,y) # m(z — y)...

The Grothendieck-Haagerup characterization

Shr is bounded on B(Ly(X)) iff Sy is cb-bounded if and only if there
exists a Hilbert space K and uniformly bounded (measurable) families
(uz) and (wy) in K satisfying M (z,y) = (uz, wy)x for a.e. z,y € X.

When 1 < p < oo, sufficient regularity conditions are the following...

Hormander-Mikhlin-Schur multipliers — CGPT 2023

ISutllas, ey s Do |le = vl {020, 0)] + oM ()]} |
I<[3]+1

o0

Marcinkiewicz thm for Schur multipliers — Yeong-Liu-Mei 2023

198 evs, 2y S sup Varg (M (j + -, j)) + Varg (M(j,j +-))

JeD(Z)



Motivation: Two open problems

Spherical Hilbert transforms

Let Hg be the Schur multiplier with symbol
1
8" x 8" 3 (z,y) = 5 (1 +se0(z, 9)) = X(w)>0-



Motivation: Two open problems

Spherical Hilbert transforms

Let Hg be the Schur multiplier with symbol
1
8" x 8" 3 (z,y) = 5 (1 +se0(z, 9)) = X(w)>0-

Lafforgue/de la Salle 2011 — If |1/2 — 1/p| > 1/2n, Hg is Sp-unbded
Motivation: Are spherical Hilbert transforms S)-bded for any p # 27



Motivation: Two open problems

Spherical Hilbert transforms

Let Hg be the Schur multiplier with symbol
1
S" x 8" > (x,y) = 5(1 + Sgn<$7y>) = X(z,y)>0-

Lafforgue/de la Salle 2011 — If |1/2 — 1/p| > 1/2n, Hg is Sp-unbded
Motivation: Are spherical Hilbert transforms S)-bded for any p # 27

Fourier idempotents on Lie groups

Let G be a connected Lie group and 1 < p # 2 < oo:

e Which smooth domains 2 give T\, : L,(LG) — L,(LG)?
e Is there a geometric characterization? A group theoretic one?

This is part of a longstanding search for Fourier L,-idempotents.

Our main results below give complete answers to the above problems...




Local geometry and analytic form
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The main result
Let ¥ Cc R” x R” be a C'-domain.

Given (z,y) € 0%, set n(z,y) = (ni(x,y),n2(z,y)) L X at (x,y).
A point (x,y) € 0X is called transverse when both nj, ngs are nonzero.
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Given 1 < p # 2 < oo, TFAE for any transverse (g, yo) € OX:

Sp-boundedness. The Schur idempotent Sy; whose symbol equals
1 on ¥ and 0 elsewhere is bounded on S, (L2(U), L2(V')) for some
pair of neighbourhoods U, V' of xg, 3o in R".

Zero-curvature condition. There are neighbourhoods U, V' of the
points g, yo such that the vectors na(x1,y), na(x2,y) are parallel
for any pair of points (z1,y), (z2,y) € 90X N (U x V).

Triangular truncation representation. There are neighbourhoods
U,V of xo,yo and Cl-functions f; : U — R and f» : V — R, such
that the domain SN (U x V) ={(z,y) € U x V : fi(z) > fao(y)}.
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The main result

Theorem A (Schur idempotents)

Given 1 < p # 2 < oo, TFAE for any transverse (zg,yg) € 0%:
Sp-boundedness. Sy, is Sp-bded in a box U x V' of (zg,0).
Zero-curvature condition. ny(x1,y)||na(z2,y) around (zo, yo)-
Triangular representation. ¥ = { f1(z) > f2(y)} around (2o, yo).

Fefferman’s Fourier framework corresponds to
Y= {(w,y) x—yE Q} for some Euclidean domain €.

It is fully transverse & explains why transversality is a new condition.

Theorem A holds for differentiable manifolds M x N. This is quite
remarkable, since Schur multipliers on general manifolds lack to admit
a Fourier transform connection.



Zero-curvature for C?>-domains

Let Y be a C2-domain:

SN U xV)={(z,y): F(z,y) >0} for some F € C*(R" x R").
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Zero-curvature for C?>-domains

Let Y be a C2-domain:

SN U xV)={(z,y): F(z,y) >0} for some F € C*(R" x R").

Equivalent curvature condition for C>-domains

<dzdyF(xuy)7u ® U> =u'- <81738ku($73/)> g v=0
-]7
for all (z,y) € 0¥ N (U x V) & (u,v) € kerd,F(x,y) x kerd, F(z,y).

Vanishing forms of d,,F or dy,F: Not valid since

S ={(z,y):2€Q} and E.={(z,y):y€Q}
lead to S,-bounded multipliers with no geometric restrictions on §2.

C?-curvature is (z,y)-symmetric. This holds as well for C'-domains by
Theorem A. Stein's rotational curvature det[d,d,F(x,y)] is similar.
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Examples and nonexamples |

Thm A holds globally for fully transverse relatively compact domains

e Fefferman’s theorem = No smooth compact Fourier idempotents.
However, there are plenty of such (nonToeplitz) Schur idempotents.
A funny instance is other form of ball multiplier

YR = {(-’E,y) eR" xR": |z]? + |y|? < RQ}.

These are clearly S,-bounded by condition (3) in Theorem A.
By our lax notion of O-flatness: Spheres 9% have zero-curvature!

e Relative compactness is crucial at this point. Indeed, any fully
transverse C'-domain of R x R trivially satisfies the zero-curvature
condition at every boundary point. But there are Toeplitz examples
of such domains arising from Fourier symbols that do not define an
Sp-multiplier for any p # 2: Just pick 2 C R with T\, L,-unbded.
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Examples and nonexamples |l

Let -1 < <1 and

Hs 5(4) = (X(ap>odny)

,YES™
Corollary A (Spherical Hilbert transforms)

If 1 <p# 2 < oo, the n-dimensional spherical Hilbert transforms Hg ;
are all Sy-bounded for n =1 and S,-unbounded for n > 2 and |§| < 1.

Yy € 0¥, NOY,,

T, 0%, # Ty0%a,
Failure of zero-curvature for spherical Hilbert transforms Hg s
Here Hg 5 = Sy with ¥ = {(z,y) € S™ x 8™ : (z,y) > &} for n = 2.

[m]
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Fourier idempotents so far...

Euclidean idempotents

Semispaces and (finite or lacunary) combinations of them.

Free groups

Bozejko-Fendler 2006: Balls in the Cayley graph — Not uniformly bded
Mei-Ricard 2017: Free Hilbert transforms via a NC Cotlar-type identity

Crossed products

P-Rogers 2016: Twisted Hilbert transforms H, x id over R" x G
H, »id Ly-bounded if and only if the orbit {g-u: g € G} is finite

Other locally compact groups

Gonzdlez-P-Xia 2022: More Hilbert transforms and Cotlar identities

How do Fourier L,-idempotents look for arbitrary Lie groups?



Fourier idempotents — The local geometry

Theorem B1 (Fourier idempotents)

Let G be a connected Lie group.
Let © C G a Cl-domain and gg € 9.
Then, TFAE for every 1 < p # 2 < o0:
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e 00 = gpexp(h) around gy (h = codim-1 Lie subalgebra).
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Fourier idempotents — The local geometry

Theorem B1 (Fourier idempotents)

Let G be a connected Lie group.
Let © C G a Cl-domain and gg € 9.
Then, TFAE for every 1 < p # 2 < co:

e xq defines locally at go a Fourier cb-L,-multiplier.
e 00 = gpexp(h) around gy (h = codim-1 Lie subalgebra).

If G is simply connected, this is also equivalent to:
e There is a smooth action G — diff(R) such that
Q={g€G|g-0>go-0} around go.

This unravels what is “Fourier boundary flatness” for Lie groups
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Consider:
i) The real line G; = R with ; = (0, 00).
ii) The affine group Go = Aff{ (R) and Q3 = {az +b:b > 0}.
iii) The universal covering G3 = PSLy(R) and Q3 = {g : ag(0) > 0}.
a : PSLa(R) ~ R by lifting standard action PSL2(R) ~ P1(R) to universal covers.

Lie's classification implies the following interesting consequence:

Theorem B2 (Fourier idempotents)

Let G be simply connected and €2, p, go as above. Then, TFAE:
e Xq defines locally at go a Fourier cb-L,-multiplier.
e )= ggf_l(Qj) near go for a surject hom f: G = G; & 1 < j < 3.

Just three Hilbert transforms on Lie groups: Others = ‘Directional’



Applications for nilpotent and simple Lie groups

Corollary B3 (Nilpotent and Simple Lie groups)

Fourier cb-L,-idempotents for 1 < p # 2 < oo:

i) Simply connected nilpotent Lie groups
They are locally = H o ¢ for ¢ : G — R smooth hom.

ii) Simple Lie groups not locally isomorphic to SLy(R)
These groups do not carry Fourier cb-L,-idempotents at all.

iii) Other Lie groups which are locally isomorphic to SLy(R)
Unique local Fourier cb-L,-idempotent up to left/right translation.
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Applications for nilpotent and simple Lie groups

Corollary B3 (Nilpotent and Simple Lie groups)

Fourier cb-L,-idempotents for 1 < p # 2 < oo:

i) Simply connected nilpotent Lie groups
They are locally = H o ¢ for ¢ : G — R smooth hom.

ii) Simple Lie groups not locally isomorphic to SLy(R)
These groups do not carry Fourier cb-L,-idempotents at all.

iii) Other Lie groups which are locally isomorphic to SLy(R)
Unique local Fourier cb-L,-idempotent up to left/right translation.

Stratified Lie groups: The ¢ above projects onto first stratum

SLy(R) vs SLy(Z): (‘C’ Z) > sgn(ac + bd) is Ly-unbounded!



Fourier and Schur idempotents

Thank you!!



Ingredients of the proofs



Schur idempotents

Lemma A1 (Schur amplification of Meyer's lemma)
Assume JX transverse in U x V and Sy, € B(S,(
Given z; =

|(, o)’

La(U), La(V))).
(zj,y) € I N (U x V), uj = ny(z) and fj € Ly(R™)
S H ()

Ly(Rm) ™ S H(Z il )

Ly R")



Schur idempotents

Lemma A1l (Schur amplification of Meyer's lemma)

Assume OX transverse in U x V and Sy, € B(S,(L2(U), L2(V))).
Given z; = (zj,y) € 0¥ N (U x V), uj = na(z) and fj € Ly,(R"™):

2
[(3, 1, () (6> 52)? sy

If (z0,y0) € OX is transverse, there are local diffeomorphisms st

B(w0) = b(yo) =0 and & x ¥(%) = {((5:2),) : 5 > (7,1}
for some g € CH(R™! x R") satisfying (0, y) = (y, e;) for every y.




Schur idempotents

Lemma A1l (Schur amplification of Meyer's lemma)

Assume OX transverse in U x V and Sy, € B(Sp(L2(U), L2(V))).
Given z; = (zj,y) € 90X N (U x V), uj = na(z;) and f; € L,(R"):

H <Za [ (fj)‘Q)% () ¥ H (Zg |fj|2>%

Lemma A2 (Local normal form of transverse hypersurfaces)

Lp(R™)

If (z0,y0) € OX is transverse, there are local diffeomorphisms st
B(w0) = b(yo) =0 and & x ¥(%) = {((5:2),) : 5 > (7,1}
for some g € CH(R™! x R") satisfying (0, y) = (y, e;) for every y.

Lemma A3 (Measurable transformations of Schur S,-multipliers)

Let (X, p), (X', 1) be atomless o-finite and f,g: X — X' be
measurable. Then, if fiu << p/ and m € Loo(X’ x X'), we obtain

lm o (f X 9llars,Lax,m)) = IMlars, Lax,fow)) < IMllars, Laxr )



PRdIS’22 — If G unimodular and p € 2Z

Fourier and Schur multipliers are locally the same.




Fourier idempotents

PRdIS’22 — If G unimodular and p € 2Z
Fourier and Schur multipliers are locally the same.

The result below generalizes P-Ricard-de la Salle's local transference...

Theorem C (Local Fourier-Schur transference)

Let G be a locally compact group and consider a bounded measurable
function m : G — C. Then, TFAE for gg € G and every 1 < p < o0
e There is a neighbourhood U of gg such that the restriction of T,
to the space of elements of L,(LG) Fourier supported by U is cb.

e There are open sets V, W C G with gy € VW ! such that the
function (g,h) € V x W = m(gh™ ") is in M, S,(L2(V), La(W)).



Fourier idempotents

PRdIS’22 — If G unimodular and p € 2Z
Fourier and Schur multipliers are locally the same.

The result below generalizes P-Ricard-de la Salle's local transference...

Theorem C (Local Fourier-Schur transference)
Let G be a locally compact group and consider a bounded measurable
function m : G — C. Then, TFAE for gg € G and every 1 < p < o0

e There is a neighbourhood U of gg such that the restriction of T,
to the space of elements of L,(LG) Fourier supported by U is cb.

e There are open sets V, W C G with gy € VW ! such that the
function (g,h) € V x W = m(gh™ ") is in M, S,(L2(V), La(W)).

Lie algebra analysis

Zero-curvature ~ 9 = gg exp(h).
Lie's classification of codim-1 Lie subalgebras ~~ 3 Hilbert transforms



A digression on transversality

sversality essential in Theorem A?




A digression on transversality

Is transversality essential in Theorem A?

Degenerate case n; = 0: ¥ = {(z,y) : y € Q}.
Theorem A ok: S)-bdness holds even for 1 < p < oo.
WLOG {nontransverse pts} has no interior in 9X-topology.




A digression on transversality

Is transversality essential in Theorem A?

Degenerate case n; = 0: ¥ = {(z,y) : y € Q}.
Theorem A ok: S)-bdness holds even for 1 < p < oo.
WLOG {nontransverse pts} has no interior in 9X-topology.

Isolated transverse points: No counterexamples so far.
It is likely that such examples can be found, but not easily...
Difficulty: Probably not for domains with analytic boundary.



