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Consejo Superior de Investigaciones Cient́ıficas

———————

—Joint with Mikael de la Salle and Eduardo Tablate—

Colloquium Talk – Harbin Institute of Technology
June 2024 – Harbin, China



Introduction
Fourier and Schur multipliers



Hilbert transforms

Given m : G→ C for some LCA group G, let Tmf =
(
mf̂

)∨
be the

Fourier multiplier with symbol m. In the classical groups, we find that

Tmf(z) =
∑
k∈Zn

m(k)f̂(k)zk or Tmf(x) =

∫
Rn

m(ξ)f̂(ξ)e2πi〈x,ξ〉dξ.

Fourier Lp-summability

• Smooth case: Which mj ’s give lim
j→∞

‖f − Tmjf‖p = 0?

• Partial Fourier summation: What if mj = χΩj for domains Ωj?

• Euclidean dilation invariance: Which Ω make TχΩ Lp(R
n)-bded?

The Hilbert transform in R

Hf(x) = p.v.

∫
R

f(y)

x− y
dy = −i

∫
R

sgn(ξ)f̂(ξ)e2πi〈x,ξ〉dξ

Fourier Lp-summability works for dilations of a convex polyhedron Π
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The ball multiplier theorem

What about dilations of the unit ball B?

Original conjecture: TχB is Lp(R
n)-bounded iff |1/p− 1/2| < 1/2n.

Fefferman’s ball multiplier theorem (1971)

If n > 1, the ball multiplier is Lp-unbounded for p 6= 2.

Kakeya construction Fefferman construction

The same applies to any domain Ω with nonflat smooth boundary ∂Ω
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Fourier multipliers over Lie groups

Let (G, µ) be a (unimodular) Lie group with

λ : G→ U(L2(G, µ)) given by
[
λ(g)ϕ

]
(h) = ϕ(g−1h).

Define its group von Neumann algebra as follows

LG := span
{
f =

∫
G
f̂(g)λ(g) dµ(g) : f̂ ∈ Cc(G)

}w

⊂ B(L2(G, µ)).

If e =unit in G, the Haar trace τ is then determined by τ(f) = f̂(e).

Given m : G→ C, its Fourier multiplier is the map

T̂mf(g) = τ(Tmfλ(g)∗) = m(g)τ(fλ(g)∗) = m(g)f̂(g).

Pioneering work: Haagerup ’79 + Cowling-Haagerup ’85
Lp-theory: Strong efforts since 2010 – Junge, Mei, P, Ricard, de la Salle...
Key in geometric group th, functional+harmonic analysis, operator algebras...



Fourier multipliers over Lie groups

Let (G, µ) be a (unimodular) Lie group with

λ : G→ U(L2(G, µ)) given by
[
λ(g)ϕ

]
(h) = ϕ(g−1h).

Define its group von Neumann algebra as follows

LG := span
{
f =

∫
G
f̂(g)λ(g) dµ(g) : f̂ ∈ Cc(G)

}w

⊂ B(L2(G, µ)).

If e =unit in G, the Haar trace τ is then determined by τ(f) = f̂(e).

Given m : G→ C, its Fourier multiplier is the map

T̂mf(g) = τ(Tmfλ(g)∗) = m(g)τ(fλ(g)∗) = m(g)f̂(g).

Pioneering work: Haagerup ’79 + Cowling-Haagerup ’85
Lp-theory: Strong efforts since 2010 – Junge, Mei, P, Ricard, de la Salle...
Key in geometric group th, functional+harmonic analysis, operator algebras...



Fourier multipliers over Lie groups

Let (G, µ) be a (unimodular) Lie group with

λ : G→ U(L2(G, µ)) given by
[
λ(g)ϕ

]
(h) = ϕ(g−1h).

Define its group von Neumann algebra as follows

LG := span
{
f =

∫
G
f̂(g)λ(g) dµ(g) : f̂ ∈ Cc(G)

}w

⊂ B(L2(G, µ)).

If e =unit in G, the Haar trace τ is then determined by τ(f) = f̂(e).

Given m : G→ C, its Fourier multiplier is the map

T̂mf(g) = τ(Tmfλ(g)∗) = m(g)τ(fλ(g)∗) = m(g)f̂(g).

Pioneering work: Haagerup ’79 + Cowling-Haagerup ’85
Lp-theory: Strong efforts since 2010 – Junge, Mei, P, Ricard, de la Salle...
Key in geometric group th, functional+harmonic analysis, operator algebras...



Fourier multipliers over Lie groups

Let (G, µ) be a (unimodular) Lie group with

λ : G→ U(L2(G, µ)) given by
[
λ(g)ϕ

]
(h) = ϕ(g−1h).

Define its group von Neumann algebra as follows

LG := span
{
f =

∫
G
f̂(g)λ(g) dµ(g) : f̂ ∈ Cc(G)

}w

⊂ B(L2(G, µ)).

If e =unit in G, the Haar trace τ is then determined by τ(f) = f̂(e).

Given m : G→ C, its Fourier multiplier is the map

T̂mf(g) = τ(Tmfλ(g)∗) = m(g)τ(fλ(g)∗) = m(g)f̂(g).

Pioneering work: Haagerup ’79 + Cowling-Haagerup ’85
Lp-theory: Strong efforts since 2010 – Junge, Mei, P, Ricard, de la Salle...
Key in geometric group th, functional+harmonic analysis, operator algebras...



What are Schur multipliers?

If M : {1, 2, . . . , n}2 → C, define

SM (A) :=
(
M(j, k)Aj,k

)
j,k

for any A ∈Mn.

If M : Z× Z→ C, define SM for infinite matrices A ∈ B(`2(Z)).

If M : Ω× Ω→ C and T ∈ B(L2(Ω, µ)) admits a kernel K, define

SM (T )f(x) =

∫
Ω
M(x, y)K(x, y)f(y)dµ(y).

No worries: Operator with kernel are dense in the relevant topologies!

Besides Fourier multipliers:

Which M : Rn ×Rn → C satisfy∥∥SM (A)
∥∥
Sp(Rn)

= tr
((
SM (A)∗SM (A)

) p
2

) 1
p ≤ Cp‖A‖Sp(Rn)?

Or more generally, same the problem with M : G×G→ C instead.
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Toeplitz symbols and Fourier multipliers

In Rn, we may consider Toeplitz symbols

M(x, y) = m(x− y).

In G, these are called Herz-Schur multipliers

Sm(A) =
(
m(gh−1)Agh

)
for A ∈ B(L2(G, µ)).

Fourier-Schur transference (2011/2015)

If 1 ≤ p ≤ ∞∥∥Sm : Sp(R
n)→ Sp(R

n)
∥∥

cb
=
∥∥Tm : Lp(R

n)→ Lp(R
n)
∥∥

cb
.

Moreover, a similar result holds for multipliers in amenable groups.

The logic of this result is based on...

L∞(T) 3 f =
∑
n∈Z

f̂(n)e2πin· 7→
(
f̂(j − k)

)
j,k
∈ B(`2(Z)).
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NonToeplitz Schur multipliers

Arbitrary Schur multipliers in Rn  M(x, y) 6= m(x− y)...

The Grothendieck-Haagerup characterization

SM is bounded on B(L2(X)) iff SM is cb-bounded if and only if there
exists a Hilbert space K and uniformly bounded (measurable) families
(ux) and (wy) in K satisfying M(x, y) = 〈ux, wy〉K for a.e. x, y ∈ X.

When 1 < p <∞, sufficient regularity conditions are the following...

Hörmander-Mikhlin-Schur multipliers – CGPT 2023∥∥SM∥∥cb(Sp(Rn))
.

∑
|γ|≤[n

2
]+1

∥∥∥|x− y||γ|{∣∣∂γxM(x, y)
∣∣+
∣∣∂γyM(x, y)

∣∣}∥∥∥
∞

Marcinkiewicz thm for Schur multipliers – Yeong-Liu-Mei 2023∥∥SM∥∥cb(Sp(Z))
. sup

j∈Z
J∈D(Z)

VarJ
(
M(j + ·, j)

)
+ VarJ

(
M(j, j + ·)

)
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Motivation: Two open problems

Spherical Hilbert transforms

Let HS be the Schur multiplier with symbol

Sn × Sn 3 (x, y) 7→ 1

2

(
1 + sgn〈x, y〉

)
= χ〈x,y〉>0.

Lafforgue/de la Salle 2011 — If |1/2− 1/p| > 1/2n, HS is Sp-unbded
Motivation: Are spherical Hilbert transforms Sp-bded for any p 6= 2?

Fourier idempotents on Lie groups

Let G be a connected Lie group and 1 < p 6= 2 <∞:

• Which smooth domains Ω give TχΩ : Lp(LG)→ Lp(LG)?
• Is there a geometric characterization? A group theoretic one?

This is part of a longstanding search for Fourier Lp-idempotents.

Our main results below give complete answers to the above problems...
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Schur idempotents
Local geometry and analytic form



The main result

Let Σ ⊂ Rn ×Rn be a C1-domain.
Given (x, y) ∈ ∂Σ, set n(x, y) = (n1(x, y),n2(x, y)) ⊥ ∂Σ at (x, y).
A point (x, y) ∈ ∂Σ is called transverse when both n1,n2 are nonzero.

Theorem A (Schur idempotents)

Given 1 < p 6= 2 <∞, TFAE for any transverse (x0, y0) ∈ ∂Σ:

1 Sp-boundedness. The Schur idempotent SΣ whose symbol equals
1 on Σ and 0 elsewhere is bounded on Sp(L2(U), L2(V )) for some
pair of neighbourhoods U, V of x0, y0 in Rn.

2 Zero-curvature condition. There are neighbourhoods U, V of the
points x0, y0 such that the vectors n2(x1, y), n2(x2, y) are parallel
for any pair of points (x1, y), (x2, y) ∈ ∂Σ ∩ (U × V ).

3 Triangular truncation representation. There are neighbourhoods
U, V of x0, y0 and C1-functions f1 : U → R and f2 : V → R, such
that the domain Σ ∩ (U × V ) =

{
(x, y) ∈ U × V : f1(x) > f2(y)

}
.
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The main result

Theorem A (Schur idempotents)

Given 1 < p 6= 2 <∞, TFAE for any transverse (x0, y0) ∈ ∂Σ:

1 Sp-boundedness. SΣ is Sp-bded in a box U × V of (x0, y0).

2 Zero-curvature condition. n2(x1, y)‖n2(x2, y) around (x0, y0).

3 Triangular representation. Σ =
{
f1(x) > f2(y)

}
around (x0, y0).

Fefferman’s Fourier framework corresponds to

Σ =
{

(x, y) : x− y ∈ Ω
}

for some Euclidean domain Ω.

It is fully transverse & explains why transversality is a new condition.

Theorem A holds for differentiable manifolds M ×N . This is quite
remarkable, since Schur multipliers on general manifolds lack to admit
a Fourier transform connection.
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Fefferman’s Fourier framework corresponds to

Σ =
{

(x, y) : x− y ∈ Ω
}

for some Euclidean domain Ω.

It is fully transverse & explains why transversality is a new condition.

Theorem A holds for differentiable manifolds M ×N . This is quite
remarkable, since Schur multipliers on general manifolds lack to admit
a Fourier transform connection.
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Zero-curvature for C2-domains

Let Σ be a C2-domain:

Σ ∩ (U × V ) =
{

(x, y) : F (x, y) > 0
}

for some F ∈ C2(Rn ×Rn).

Equivalent curvature condition for C2-domains〈
dxdyF (x, y), u⊗ v

〉
:= ut ·

(
∂xj∂ykF (x, y)

)
j,k
· v = 0

for all (x, y) ∈ ∂Σ ∩ (U × V ) & (u, v) ∈ ker dxF (x, y)× ker dyF (x, y).

Vanishing forms of dxxF or dyyF : Not valid since

Σr =
{

(x, y) : x ∈ Ω
}

and Σc =
{

(x, y) : y ∈ Ω
}

lead to Sp-bounded multipliers with no geometric restrictions on Ω.

C2-curvature is (x, y)-symmetric. This holds as well for C1-domains by
Theorem A. Stein’s rotational curvature det[dxdyF (x, y)] is similar.
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Examples and nonexamples I

Thm A holds globally for fully transverse relatively compact domains

• Fefferman’s theorem ⇒ No smooth compact Fourier idempotents.
However, there are plenty of such (nonToeplitz) Schur idempotents.
A funny instance is other form of ball multiplier

ΣR =
{

(x, y)∈Rn ×Rn : |x|2 + |y|2 < R2
}
.

These are clearly Sp-bounded by condition (3) in Theorem A.
By our lax notion of ∂-flatness: Spheres ∂ΣR have zero-curvature!

• Relative compactness is crucial at this point. Indeed, any fully
transverse C1-domain of R×R trivially satisfies the zero-curvature
condition at every boundary point. But there are Toeplitz examples
of such domains arising from Fourier symbols that do not define an
Sp-multiplier for any p 6= 2: Just pick Ω ⊂ R with TχΩ Lp-unbded.
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Examples and nonexamples II

Let −1 < δ < 1 and

HS,δ(A) =
(
χ〈x,y〉>δAxy

)
x,y∈Sn

Corollary A (Spherical Hilbert transforms)

If 1 < p 6= 2 <∞, the n-dimensional spherical Hilbert transforms HS,δ

are all Sp-bounded for n = 1 and Sp-unbounded for n ≥ 2 and |δ| < 1.

•
y

x1
x2

∂Σx1

∂Σx2

y ∈ ∂Σx1∩ ∂Σx2

Ty∂Σx1 6= Ty∂Σx2

Failure of zero-curvature for spherical Hilbert transforms HS,δ

Here HS,δ = SΣ with Σ =
{

(x, y) ∈ Sn × Sn : 〈x, y〉 > δ
}

for n = 2.
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Fourier idempotents
Three Hilbert transforms on Lie groups



Fourier idempotents so far...

Euclidean idempotents

Semispaces and (finite or lacunary) combinations of them.

Free groups

Bożejko-Fendler 2006: Balls in the Cayley graph – Not uniformly bded
Mei-Ricard 2017: Free Hilbert transforms via a NC Cotlar-type identity

Crossed products

P-Rogers 2016: Twisted Hilbert transforms Hu o id over Rn o G
Hu o id Lp-bounded if and only if the orbit {g · u : g ∈ G} is finite

Other locally compact groups

González-P-Xia 2022: More Hilbert transforms and Cotlar identities

How do Fourier Lp-idempotents look for arbitrary Lie groups?
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Fourier idempotents – The local geometry

Theorem B1 (Fourier idempotents)

Let G be a connected Lie group.
Let Ω ⊂ G a C1-domain and g0 ∈ ∂Ω.
Then, TFAE for every 1 < p 6= 2 <∞:

• χΩ defines locally at g0 a Fourier cb-Lp-multiplier.

• ∂Ω = g0 exp(h) around g0 (h = codim-1 Lie subalgebra).

If G is simply connected, this is also equivalent to:

• There is a smooth action G→ diff(R) such that

Ω =
{
g ∈ G | g · 0 > g0 · 0

}
around g0.

This unravels what is “Fourier boundary flatness” for Lie groups
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Fourier idempotents – The group structure

Consider:

i) The real line G1 = R with Ω1 = (0,∞).

ii) The affine group G2 = Aff+(R) and Ω2 = {ax+ b : b > 0}.
iii) The universal covering G3 = P̃SL2(R) and Ω3 = {g : αg(0) > 0}.

α : P̃SL2(R) y R by lifting standard action PSL2(R) y P1(R) to universal covers.

Lie’s classification implies the following interesting consequence:

Theorem B2 (Fourier idempotents)

Let G be simply connected and Ω, p, g0 as above. Then, TFAE:

• χΩ defines locally at g0 a Fourier cb-Lp-multiplier.

• Ω = g0f
−1(Ωj) near g0 for a surject hom f : G→ Gj & 1 ≤ j ≤ 3.

Just three Hilbert transforms on Lie groups: Others = ‘Directional’
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Applications for nilpotent and simple Lie groups

Corollary B3 (Nilpotent and Simple Lie groups)

Fourier cb-Lp-idempotents for 1 < p 6= 2 <∞:

i) Simply connected nilpotent Lie groups
They are locally = H ◦ ϕ for ϕ : G→ R smooth hom.

ii) Simple Lie groups not locally isomorphic to SL2(R)
These groups do not carry Fourier cb-Lp-idempotents at all.

iii) Other Lie groups which are locally isomorphic to SL2(R)
Unique local Fourier cb-Lp-idempotent up to left/right translation.

Stratified Lie groups: The ϕ above projects onto first stratum

SL2(R) vs SL2(Z):

(
a b
c d

)
7→ sgn(ac+ bd) is Lp-unbounded!
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Fourier and Schur idempotents

Thank you!!



Ingredients of the proofs



Schur idempotents

Lemma A1 (Schur amplification of Meyer’s lemma)

Assume ∂Σ transverse in U × V and SΣ ∈ B(Sp(L2(U), L2(V ))).
Given zj = (xj , y) ∈ ∂Σ ∩ (U × V ), uj = n2(zj) and fj ∈ Lp(Rn):∥∥∥(∑

j

∣∣Huj (fj)
∣∣2) 1

2
∥∥∥
Lp(Rn)

.
∥∥∥(∑

j
|fj |2

) 1
2
∥∥∥
Lp(Rn)

.

Lemma A2 (Local normal form of transverse hypersurfaces)

If (x0, y0) ∈ ∂Σ is transverse, there are local diffeomorphisms st

φ(x0) = ψ(y0) = 0 and φ× ψ(Σ) =
{(

(s, x̃), y
)

: s > g(x̃, y)
}

for some g ∈ C1(Rn−1 ×Rn) satisfying g(0, y) = 〈y, e1〉 for every y.

Lemma A3 (Measurable transformations of Schur Sp-multipliers)

Let (X,µ), (X ′, µ′) be atomless σ-finite and f, g : X → X ′ be
measurable. Then, if f∗µ << µ′ and m ∈ L∞(X ′ ×X ′), we obtain
‖m ◦ (f × g)‖MSp(L2(X,µ)) = ‖m‖MSp(L2(X′,f∗µ)) ≤ ‖m‖MSp(L2(X′,µ′)).
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Fourier idempotents

PRdlS’22 – If G unimodular and p ∈ 2Z
Fourier and Schur multipliers are locally the same.

The result below generalizes P-Ricard-de la Salle’s local transference...

Theorem C (Local Fourier-Schur transference)

Let G be a locally compact group and consider a bounded measurable
function m : G→ C. Then, TFAE for g0 ∈ G and every 1 < p <∞ :

• There is a neighbourhood U of g0 such that the restriction of Tm
to the space of elements of Lp(LG) Fourier supported by U is cb.

• There are open sets V,W ⊂ G with g0 ∈ VW−1 such that the
function (g, h) ∈ V ×W 7→ m(gh−1) is in McbSp(L2(V ), L2(W )).

Lie algebra analysis

Zero-curvature  ∂Ω = g0 exp(h).
Lie’s classification of codim-1 Lie subalgebras  3 Hilbert transforms
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A digression on transversality

Is transversality essential in Theorem A?

Degenerate case n1 ≡ 0: Σ = {(x, y) : y ∈ Ω}.
Theorem A ok: Sp-bdness holds even for 1 ≤ p ≤ ∞.
WLOG {nontransverse pts} has no interior in ∂Σ-topology.

Isolated transverse points: No counterexamples so far.
It is likely that such examples can be found, but not easily...
Difficulty: Probably not for domains with analytic boundary.
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