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Nonlinear damped wave equation on Rn

We consider the following semilinear damped wave equation:
utt −∆u + ut = |u|p, x ∈ Rn, t > 0,

u(0, x) = εu0(x), x ∈ Rn,

ut(0, x) = εu1(x), x ∈ Rn,

(1)

where 1 < p < ∞, ∆ is the Laplacian on Rn and ε > 0 is a size parameter.

▶ If u0, u1 > 0 and additionally to L1(Rn) :
• Matsumura, 1976: When n = 1, 2, proved the global-in-time existence of small data
solutions for p > 1 + 2

n .

• Todorova and Yordanov 2001: For any n ≥ 1, a global existence for p > 1 + 2
n (by

assuming compactly supported initial data) and blow-up of the local-in-time solutions in the
case 1 < p < 1 + 2

n .

• Zhang 2001: The exponent p = 1 + 2
n belongs to the blow-up region.

• Ikehata and Tanizawa 2005: removed the restriction of compactly supported data for the
supercritical case p > 1 + 2

n .

▶ The exponent pcrit(n) := 1 + 2
n is called the critical exponent.

▶ Ikeda-(Wakasugi, Ogawa, Sobajima) 2015, 16,19, Lai-Zhou 2019 The sharp lifespan
estimates are given by

Tε


= ∞ if p > pcrit(n),
≃ exp

(
Cε−(p−1)

)
if p = pcrit(n),

≃ Cε
− 2(p−1)

2−n(p−1) if p < pcrit(n).
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Nonlinear heat equation and Fujita exponent

▶ The exponent pcrit(n) := 1 + 2
n plays a similar role as in the semilinear damped wave

equation in the study of the following semilinear heat equation:{
−∆v + vt = |v |p, x ∈ Rn, t > 0,

v(0, x) = v0(x), x ∈ Rn.
(2)

▶ Fujita 1966, Hayakawa 1973, Weissler 1981: In this case, pcrit(n) := 1 + 2
n is known as

“Fujita exponent, ” denoted by pFuj(n).

▶ Li 1996, Bellout and Friedman 1989 asserted that the damped wave equation has a
diffusive structure as t → ∞. Nishihara 2003 established Lp-Lq estimates for difference
solutions to damped wave and heat equations with Lp initial data.

▶ Gallay and Raugel 1998 : The global solutions of the nonlinear damped wave equation
behaves like those of nonlinear heat equations with suitable data N = 1.

▶ For N ≥ 2 : [Karch 2000] with p > 1 + 4
n , [Hayashi-Kaikina-Naumkin 2004] with

p > pFuj(n).

▶ This is known as the “diffusion phenomenon” of (linear or nonlinear) damped wave
equations.
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Damped wave equations on Rn : Initial data from negative Sobolev spaces

Recall the following semilinear damped wave equation
utt −∆u + ut = |u|p, x ∈ Rn, t > 0,

u(0, x) = u0(x), x ∈ Rn,

ut(0, x) = u1(x), x ∈ Rn.

(3)

▶ Ikehata and Ohta 2002, Ikeda-Inui-Okamoto-Wakasugi 2019
(u0, u1) ∈ (Hs(Rn) ∩ Lm(Rn))×

(
Hs−1(Rn) ∩ Lm(Rn)

)
with m ∈ (1, 2].

• The new modified Fujita exponent becomes

pFuji(n) := pFuji

( n

m

)
= 1 +

2m

n
.

▶ The Hardy-Littlewood-Sobolev inequality implies that, m ∈ (1, 2], Lm(Rn) ⊂ Ḣ−γ(Rn) for
γ = n

( 1
m − 1

2

)
∈ [0, n

2 ).

▶ This implies optimal Lm-L2 decay estimates of homogeneous damped wave equations.

▶ Chen and Reissig 2023: (u0, u1) ∈
(
Hs(Rn) ∩ Ḣ−γ(Rn)

)
×

(
Hs−1(Rn) ∩ Ḣ−γ(Rn)

)
with γ > 0.

▶ Guo and Wang 2012, Tang-Zhang-Zou 2024: Compressible Navier-Stokes equations and
the Boltzmann equation with initial data from negative order Sobolev space.



Damped wave equations on Rn : Initial data from negative Sobolev spaces

Recall the following semilinear damped wave equation
utt −∆u + ut = |u|p, x ∈ Rn, t > 0,

u(0, x) = u0(x), x ∈ Rn,

ut(0, x) = u1(x), x ∈ Rn.

(3)

▶ Ikehata and Ohta 2002, Ikeda-Inui-Okamoto-Wakasugi 2019
(u0, u1) ∈ (Hs(Rn) ∩ Lm(Rn))×

(
Hs−1(Rn) ∩ Lm(Rn)

)
with m ∈ (1, 2].

• The new modified Fujita exponent becomes

pFuji(n) := pFuji

( n

m

)
= 1 +

2m

n
.

▶ The Hardy-Littlewood-Sobolev inequality implies that, m ∈ (1, 2], Lm(Rn) ⊂ Ḣ−γ(Rn) for
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Damped wave equations on Rn : Initial data from negative Sobolev spaces

Chen and Reissig 2023 studied the following semilinear damped wave equation
utt −∆u + ut = |u|p, x ∈ Rn, t > 0,

u(0, x) = u0(x), x ∈ Rn,

ut(0, x) = u1(x), x ∈ Rn,

(4)

with initial data additionally belonging to homogeneous Sobolev spaces of negative order
Ḣ−γ(Rn) with γ > 0.
▶ They found a new critical exponent

pcrit(n, γ) := 1 +
4

n + 2γ
, γ ∈

(
0,

n

2

)
.

• For p > pcrit(n, γ), the problem (4) admits a global-in-time Sobolev solution for
sufficiently small data of lower regularity.
• For 1 < p < pcrit(n, γ), the solutions to (4) blow-up in a finite time. In other words, there
exists T > 0 such that the solution to (4) satisfies ∥u (·, tm)∥∞ → ∞ as tm → T .

▶ They mentioned that the behavior of solutions to (4) at the critical exponent p = pcrit (n, γ)
is still an open question.

▶ The sharp lifespan estimates for weak solutions to (4) is given by

Tε

{
= ∞ if p > pcrit (n, γ),

≃ Cε
− 2

2p′−2− n
2 −γ if p < pcrit (n, γ),

where C is a positive constant independent of ε and p′.
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where C is a positive constant independent of ε and p′.



Damped wave equations on Rn : Critical exponent case

For any T > 0, a weak solution of the Cauchy problem
utt −∆u + ut = |u|p, x ∈ Rn, t > 0,

u(0, x) = u0(x), x ∈ Rn,

ut(0, x) = u1(x), x ∈ Rn,

(5)

in [0, T )× Rn is a function u ∈ Lp
loc ([0, T )× Rn) that satisfies the following integral relation:∫ T

0

∫
Rn

u(t, x)
(
∂2

t ϕ(t, x)−∆ϕ(t, x)− ∂tϕ(t, x)
)

dx dt −
∫
Rn

u0(x)ϕ(0, x) dx

−
∫
Rn

u1(x)ϕ(0, x) dx +

∫
Rn

u0(x)∂tϕ(0, x) dx =

∫ T

0

∫
Rn

|u(t, x)|pϕ(t, x) dx dt, (6)

for any ϕ ∈ C∞
0 ([0, T )× Rn).

Global solution: If T = ∞, we call u to be a global-in-time weak solution to (5),
Local solution: otherwise, u is said to be a local-in-time weak solution to (5).



Damped wave equations on Rn : Critical exponent case

Theorem 1 (Berikbol, K., Mondal, Ruzhansky, 2024)
Let γ ∈

(
0, n

2

)
and let the exponent p satisfy

p = pCrit(n, γ) := 1 +
4

n + 2γ
.

We assume that the non-negative initial data (u0, u1) ∈ Ḣ−γ(Rn)× Ḣ−γ(Rn) satisfies

u0(x) + u1(x) ≥ C1⟨x⟩−n( 1
2 +

γ
n )(log(e + |x|))−1, x ∈ Rn, (7)

where C1 is a positive constant. Then, there is no global (in-time) weak solution to
utt −∆u + ut = |u|p, x ∈ Rn, t > 0,

u(0, x) = u0(x), x ∈ Rn,

ut(0, x) = u1(x), x ∈ Rn.

(8)

• We prove this theorem using the test function method (Mitidieri and Pohozaev 2001, Zhang
2001).
• We introduce an appropriate test function for the critical case p = pCrit different from (Chen
and Reissig 2023) in the sub-critical case p < pCrit(n, γ).
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Our Goal:

To study the Cauchy problem for the semilinear damped wave equation with power-type
nonlinearities: 

utt +Ru + ut = |u|p, x ∈ G, t > 0,

u(0, x) = εu0(x), x ∈ G,

ut(0, x) = εu1(x), x ∈ G,

(9)

where 1 < p < ∞, R is a positive Rockland operator of homogeneous degree ν ≥ 2
on a graded Lie group G, and the initial data (u0, u1) with its size parameter ε > 0
belongs to homogeneous Sobolev spaces of negative order Ḣ−γ(G)× Ḣ−γ(G) with
γ > 0.

▶ Examples of graded Lie group The commutative group (Rn,+), the Heisenberg group,
Engel groups, Cartan groups, and more generally, stratified Lie groups are examples of
graded Lie groups.

▶ Examples of Rockland operators For G = (Rn,+) : a Rockland operator R can be any
positive homogeneous elliptic differential operator with constant coefficients, for example,
we can consider

R = (−∆)m or R = (−1)m
n∑

j=1

aj

(
∂

∂xj

)2m

, aj > 0,m ∈ N,
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Damped wave equation on Lie groups: The Heisenberg group

▶ Müller and Stein, 1999: Lp-estimates for wave equations on the Heisenberg group. Several
papers on related topic by Thangavelu and Narayanan (2001) and coauthors.

▶ Pascucci, 1998: Semilinear Cauchy problem for the heat equation with power nonlinearity
on the Heisenberg group Hn. Fujita exponent:= 1 + 2

Q , Q = 2n + 2 is the homogeneous
dimension of Hn.

▶ Ruzhansky and Tokmagambetov, 2018: Damped wave equation with mass term:

utt +Ru + ut + mu = |u|p

on the Heisenberg group and graded Lie groups. Also, Ruzhansky and Taranto, 2020 for
time-dependent coefficient.

▶ Ruzhansky and Yessirkegenov, 2021: Fujita exponent 1 + 2
D for heat equation associated

with sub-Laplacian on general unimodular Lie groups with polynomial volume growth G
with global dimension D.

▶ Georgiev and Palmieri, 2019: Semilinear damped wave equation on Hn with power
nonlinearity: Critical exponent= Fujita exponent= 1 + 2

Q . Global existence of small data
solutions for supercritical case and a blow-up result for (sub)-critical case.

▶ Palmieri, 2020: The L2-L2 decay estimates of for the solution of the homogeneous linear
damped wave equation on the Heisenberg group and their derivatives.
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Dilations and homogeneous Lie groups

Homogeneous Lie groups
A connected and simply connected Lie group G with dimG = n is called a homogeneous Lie

group if the Lie algebra g ∼= Rn of G is endowed with a family of dilations Dg
r , r > 0, which are

vector space automorphisms on g satisfying the following two conditions:

▶ For every r > 0, Dg
r is a map of the form Dg

r := Exp(ln(r)A) for some diagonalisable
linear operator A ≡ diag[ν1, · · · , νn] on g.

▶ ∀X ,Y ∈ g, and r > 0, [Dg
r X ,Dg

r Y ] = Dg
r [X ,Y ].

• The eigenvalues 0 < ν1 ≤ ν2 ≤ . . . ≤ νn of A are called dilations’ weights. The
homogeneous dimension of a homogeneous Lie group G is given by

Q := Tr(A) = ν1 + · · ·+ νn.

• Convention: The weights 0 < ν1 ≤ ν2 ≤ . . . ≤ νn are jointly rescaled so that the lowest
weight ν1 = 1. This also implies that Q ≥ n.
• A Lie algebra admitting a family of dilations is nilpotent. Consequently, a homogeneous Lie
group is nilpotent.
• The dilations Dg

r of the Lie algebra g induce a family of dilations on G := expG g defined via,
Dr := expG ◦Dg

r ◦ exp−1
G , r > 0.

• The bi-invariant Haar measure dx on G, which is just a Lebesgue measure on Rn, is
Q-homogeneous in the sense that

d(Dr (x)) = rQdx.

G. Folland and E. Stein, Hardy Spaces on Homogeneous Groups. Princeton University Press, Princeton, NJ, (1982).
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Graded Lie groups

Graded Lie groups
A graded Lie group G is a connected and simply connected Lie group whose Lie algebra g can
be written as

g =
s⊕

i=1

gi , with [gi , gj ] ⊂ gi+j . and gi+j = {0} for i + j > s

▶ Gradation gives rise to a family dilations Dg
r , r > 0 on g using the matrix given by

AXj = iXj for every Xj ∈ gi , that is, Dg
r Xj = r i Xj for i ∈ N.

▶ A Lie algebra is stratifiable if it is graded and there exists a gradation of g such that
[g1, gi ] = gi+1 for all i ∈ N. A Lie group associated with stratifiable Lie algebra is called a
stratified Lie group.

Stratified Lie groups ⊂ Graded Lie groups ⊂ Homogeneous groups ⊂ Nilpotent
Lie groups.

▶ An example of a nine dimensional nilpotent Lie algebra which does not admit any family of
dilations.

V. Fischer and M. Ruzhansky, Quantization on Nilpotent Lie Groups, Progr. Math., vol.314, Birkhäuser/Springer, (2016).

J. L. Dyer. A nilpotent Lie algebra with nilpotent automorphism group. Bull. Amer. Math. Soc., 76:52–56, 1970.
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Examples of graded Lie groups

• The Abelian group G := (Rn,+) with g := Rn with trivial gradation g1 := Rn. The dilation is
the canonial dilation

Dr (x1, x2, . . . , xn) = (rx1, rx2, . . . , rxn).

• Define dilations structure on Rn by

D′
r (x1, x2, . . . , xn) = (rν1 x1, rν2 x2, . . . , rνn xn)

with all 0 < ν1 ≤ ν2 ≤
. . . νn are rational. Then Rn with this family of dilations has graded

structure.
• The Heisenberg group Hn := (R2n+1, ◦) with group operation ◦ given by

(x, y , t) ◦ (x ′, y ′, t′) = (x + x ′, y + y ′, t + t′ +
1

2
(xy ′ − x ′y)),

where (x, y , t), (x ′, y ′, t′) ∈ Rn × Rn × R. The canonical basis for the Lie algebra hn of Hn is
given by the left-invariant vector fields:

Xj = ∂xj −
yj

2
∂t , Yj = ∂yj +

xj

2
∂t , j = 1, 2, . . . n, and T = ∂t , (10)

which satisfy the commutator relation [Xi ,Yj ] = δij T , for i, j = 1, 2, . . . n.
• The Heisenberg Lie algebra hn admits the decomposition hn = g1 ⊕ g2, where
g1 = R− span{Xj ,Yj}n

j=1 and g2 = R− span{T}. This include a family of dilations

Dr (x, y , t) = (rx, ry , r2t) r > 0.
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Fourier Analysis on graded Lie groups

• Ĝ: Unitary dual of G, that is, the set of equivalence classes of all strongly continuous unitary
irreducible representations (π,Hπ) of G.

• The group Fourier transform FG(f )(π) : Hπ → Hπ of f ∈ S(G) ∼= S(Rn), at π ∈ Ĝ, is a
linear mapping defined by

FG(f )(π) = f̂ (π) :=
∫
G

f (x)π(x)∗dx =

∫
G

f (x)π(x−1) dx. (11)

• There exists a measure µ on Ĝ such that the following inversion formula

f (x) :=
∫
Ĝ

Tr(π(x )̂f (π))dµ(π)

holds for every f ∈ S(G) and x ∈ G.
• The following Plancherel identity holds for f ∈ S(G)∫

G
|f (x)|2 dx =

∫
Ĝ
∥̂f (π)∥HS(Hπ) dµ(π). (12)

• The Fourier transform FG extends uniquely to a unitary isomorphism from L2(G) onto the
space L2(Ĝ).
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Ĝ
∥̂f (π)∥HS(Hπ) dµ(π). (12)

• The Fourier transform FG extends uniquely to a unitary isomorphism from L2(G) onto the
space L2(Ĝ).
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Rockland operators

• For a left-invariant differential operator T , let us denote by π(T ), the symbol of T , which is the
infinitesimal representation dπ(T ) associated with π ∈ Ĝ.

Rockland operator
A positive left-invariant differential operator R on a homogeneous group G called the Rockland
operator if it is homogeneous of positive degree ν, that is,

R(f ◦ Dr ) = rν(Rf ) ◦ Dr , r > 0, f ∈ C∞(G)

and the operator π(R) is injective on H∞
π for every nontrivial representation π ∈ Ĝ, that is,

∀v ∈ H∞
π π(R)v = 0 =⇒ v = 0. (RC)

(RC) ⇐⇒
Rockland conjecture

Hypoellipticity of R, (Rf ∈ C∞(G) =⇒ f ∈ C∞(G)).

Rockland =⇒ Graded
Existence of a Rockland operator on homogeneous Lie group G =⇒ G is a graded Lie group

C. Rockland, Hypoellipticity on the Heisenberg group-representation-theoretic criteria. Trans. Amer. Math. Soc., 240, 1–52,
(1978).

B. Helffer and J, Nourrigat, Caracterisation des opèrateurs hypoelliptiques homogènes invariantsàgauche sur un groupe de
Lie nilpotent graduè. Comm. Partial Differential Equations 4(8), 899–958, (1979).
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Spectrum of symbol of Rockland operator

▶ For any f ∈ L2(G), we have

FG(Rf )(π) = π(R)̂f (π).

▶ The spectrum of the operator π(R) with π ∈ Ĝ\{1}, is discrete and lies in (0,∞).

▶ We can choose an orthonormal basis for Hπ such that the infinite matrix associated to the
self-adjoint operator π(R) has the following representation

π(R) =


π2

1 0 · · · · · ·
0 π2

2 0 · · ·
... 0

. . .
...

...
. . .

 (13)

where πi , i = 1, 2, . . . , are strictly positive real numbers and π ∈ Ĝ\{1}.

.

A. Hulanicki, J. W. Jenkins, and J. Ludwig, Minimum eigenvalues for positive, Rockland operators, Proc. Amer. Math. Soc.
94, 718–720 (1985).

A. F. M. ter Elst and Derek W. Robinson, Spectral estimates for positive Rockland operators. Algebraic groups and Lie
groups, 195–213, Austral. Math. Soc. Lect. Ser., 9, Cambridge Univ. Press, Cambridge, ()1997)
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Sobolev spaces on graded Lie groups

▶ The inhomogeneous Sobolev spaces Hs(G) := Hs
R(G), s ∈ R, associated to positive

Rockland operator R of homogeneous degree ν, is defined as

Hs (G) :=
{

f ∈ D′ (G) : (I +R)s/ν f ∈ L2 (G)
}
,

with the norm
∥f∥Hs(G) :=

∥∥∥(I +R)s/ν f
∥∥∥

L2(G)
.

▶ The homogeneous Sobolev space Ḣp,s
R (G) := Ḣp,s(G) on G as the space of all

f ∈ D′(G) such that Rs/ν f ∈ Lp(G) with the norm

∥f∥Ḣp,s(G) :=
∥∥∥Rs/ν f

∥∥∥
Lp(G)

.

▶ These Sobolev spaces are independent of the choice of a Rockland operator R.

V. Fischer and M. Ruzhansky, Sobolev spaces on graded Lie groups, Ann. Inst. Fourier (Grenoble) 67(4), 1671–1723 (2017).
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Interpolation inequalities on graded Lie groups

▶ Hardy-Littlewood-Sobolev inequality: Let s > 0 and 1 < p < q < ∞ be such that

s

Q
=

1

p
−

1

q
.

Then

∥f∥Lq(G) ≲ ∥f∥Ḣp,s(G) ≃ ∥R
s
ν f∥Lp(G). (14)

▶ Gagliardo-Nirenberg inequality : Let s ∈ (0, 1], 1 < r < Q
s , and 2 ≤ q ≤ rQ

Q−sr . Then

∥u∥Lq(G) ≲ ∥u∥θ
Ḣr,s(G)

∥u∥1−θ
L2(G)

, (15)

for θ =
(

1
2 − 1

q

)
/
(

s
Q + 1

2 − 1
r

)
∈ [0, 1], provided that s

Q + 1
2 ̸= 1

r .

V. Fischer and M. Ruzhansky, Sobolev spaces on graded Lie groups, Ann. Inst. Fourier (Grenoble) 67(4), 1671–1723 (2017).

M. Ruzhansky and N. Tokmagambetov, Nonlinear damped wave equations for the sub-Laplacian on the Heisenberg group
and for Rockland operators on graded Lie groups, J. Differential Equations 265(10), 5212-5236 (2018).
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Examples of Rockland operators

• On a graded Lie group G, operators

R :=
n∑

j=1

(−1)
v0
vj aj X

2
v0
vj

j , with a1, a2, . . . , an > 0

are Rockland operators of homogeneous degree ν = 2ν0.

• On a stratified Lie group G, sub-Laplacian

LG := −(X 2
1 + X 2

2 + ·+ X 2
n1
)

is a Rockland operator of the homogeneous degree ν = 2.
• In particular, on Hn : the sub-Laplacian LHn := −

∑n
i=1 X 2

i + Y 2
i and its power

(LHn )k , k ∈ N are Rockland operators.
• On Rn, the operators

R :=
n∑

j=1

(−1)
v0
vj aj∂

2
v0
vj

j , with a1, a2, . . . , an > 0

are Rockland operators of degree ν = 2ν0.
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n1
)

is a Rockland operator of the homogeneous degree ν = 2.
• In particular, on Hn : the sub-Laplacian LHn := −

∑n
i=1 X 2

i + Y 2
i and its power

(LHn )k , k ∈ N are Rockland operators.
• On Rn, the operators

R :=
n∑

j=1

(−1)
v0
vj aj∂

2
v0
vj

j , with a1, a2, . . . , an > 0

are Rockland operators of degree ν = 2ν0.



Damped wave equations on graded Lie group: Sobolev estimates of solutions

Theorem 2 (Dasgupta, K., Mondal and Ruzhansky 2024)
Let G be a graded Lie group of homogeneous dimension Q and let R be a positive Rockland
operator of homogeneous degree ν. Assume that (u0, u1) ∈ (Hs ∩ Ḣ−γ )× (Hs−1 ∩ Ḣ−γ )
with s ≥ 0 and s + γ ≥ 0. Then the solution of the linear Cauchy problem

utt +Ru + ut = 0, x ∈ G, t > 0,

u(0, x) = u0(x), x ∈ G,

ut(0, x) = u1(x), x ∈ G,

(16)

satisfies the following Ḣs-decay estimate

∥u(t, ·)∥Ḣs ≲ (1 + t)−
s+γ
ν

(
∥u0∥Hs∩Ḣ−γ + ∥u1∥Hs−1∩Ḣ−γ

)
, (17)

for any t ≥ 0.

Remark
The additional use of Sobolev spaces of negative order for initial data provides a decay rate
(1 + t)−

γ
ν for any γ > 0.
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Sketch of the proof

Applying the group Fourier transform on G to the linear system (16) with respect to x , for all
π ∈ Ĝ, we get 

∂2
t û(t, π) + π(R)û(t, π) + ∂t û(t, π) = 0, π ∈ Ĝ, t > 0,

û(0, π) = û0(π), π ∈ Ĝ,

∂t û(0, π) = û1(π), π ∈ Ĝ,

(18)

where π(R) is the symbol of the Rockland operator R on G.

For m, k ∈ N, we introduce the notation

û(t, π)m,k
.
= (û(t, π)ek , em)Hπ

, (19)

where {em}m∈N is the same orthonormal basis in the representation space Hπ that gives us
(13). Then û(t, π)m,k solves the following infinite system of ordinary differential equation with
respect to t variable

∂2
t û(t, π)m,k + ∂t û(t, π)m,k + β2

m,π û(t, π)m,k = 0, π ∈ Ĝ, t > 0,

û(0, π)m,k = û0(π)m,k , π ∈ Ĝ,

∂t û(0, π)m,k = û1(π)m,k , π ∈ Ĝ,

(20)

where we denote β2
m,π = π2

m.
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Sketch of the proof

The characteristic equation of the above system is given by

λ2 + λ+ β2
m,π = 0.

Consequently, the characteristic roots are given by

λ1 =
−1 −

√
1 − 4β2

m,π

2
and λ2 =

−1 +
√

1 − 4β2
m,π

2
.

Using asymptotic expansions of eigenvalues, we consider the following cases:
▶ When |βm,π | < δ ≪ 1:

λ1 = −1 +O
(
β2

m,π

)
,

λ2 = −β2
m,π +O

(
β4

m,π

)
. (21)

▶ When |βm,π | > N ≫ 1:

λ1 = −
1

2
− i|βm,π |+O

(
|βm,π |−1) ,

λ2 = −
1

2
+ i|βm,π |+O

(
|βm,π |−1) . (22)

▶ When δ < |βm,π | < N:

Re(λ1) < 0 and Re(λ2) < 0. (23)
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Sketch of the proof

Thus, the solution to the homogeneous system (20) is given by

û(t, π)m,k = K0(t, π)m,k û0(π)m,k + K1(t, π)m,k û1(π)m,k , (24)

where

K0(t, π)m,k =
λ1eλ2 t − λ2eλ1 t

λ1 − λ2

(25)

=



(
−1+O(β2

m,π)
)

e(−β2
m,π+O(β4

m,π ))t−
(
−β2

m,π+O(β4
m,π)

)
e(−1+O(β2

m,π ))t

−1+O
(
β2

m,π

) for |βm,π | < δ,

(i|βm,π|− 1
2 +O(|βm,π|−1))e(−i|βm,π|− 1

2 +O(|βm,π|−1))t

2i|βm,π|+O(1)

− (−i|βm,π|− 1
2 +O(|βm,π|−1))e(i|βm,π|− 1

2 +O(|βm,π|−1))t

2i|βm,π|+O(1) for |βm,π | > N.

(26)
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Sketch of the proof

K1(t, π)m,k =
eλ1 t − eλ2 t

λ1 − λ2

(27)

=


e(−1+O(β2

m,π))t−e(−β2
m,π+O(β4

m,π))t

−1+O
(
β2

m,π

) for |βm,π | < δ,

e(i|βm,π|− 1
2 +O(|βm,π|−1))t−e(−i|βm,π|− 1

2 +O(|βm,π|−1))t

2i|βm,π|+O(1) for |βm,π | > N.

(28)

We have the following point-wise estimates for K0 and K1:

|K0(t, π)m,k | ≲


|βm,π |2e−ct + e−ctβ2

m,π for |βm,π | < δ ≪ 1,

e−ct for δ ≤ |βm,π | ≤ N,

e−ct for |βm,π | > N ≫ 1,

(29)

and
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Sketch of the proof

|K1(t, π)m,k | ≲


e−ct + e−ctβ2

m,π for |βm,π | < δ ≪ 1,

e−ct for δ ≤ |βm,π | ≤ N,

|βm,π |−1e−ct for |βm,π | > N ≫ 1,

(30)

for some constant c > 0.

Now using the Plancherel formula, we obtain

∥u(t, ·)∥2
Ḣs =

∫
Ĝ
∥π(R)

s
ν û(t, π)∥2

HS dµ(π)

≲
∑

m,k∈N

∫
Ĝ
π

4s
ν

m
[
|K0(t, π)m,k |2|û0(π)m,k |2 + |K1(t, π)m,k |2|û1(π)m,k |2

]
dµ(π)

= IK0 + IK1 , (31)

where

IK0 :=
∑

m,k∈N

∫
Ĝ
π

4s
ν

m |K0(t, π)m,k |2|û0(π)m,k |2dµ(π)

and

IK1 :=
∑

m,k∈N

∫
Ĝ
π

4s
ν

m |K1(t, π)m,k |2|û1(π)m,k |2dµ(π).
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Ĝ
π

4s
ν

m
[
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Sketch of the proof

When |βm,π | < δ ≪ 1, we obtain the following estimates:

IK0 ≲ (1 + t)−
2(s+γ)

ν ∥u0∥2
Ḣ−γ , (32)

and

IK1 ≲ (1 + t)−
2(s+γ)

ν ∥u1∥2
Ḣ−γ . (33)

Now consider the case |βm,π | > N ≫ 1.

IK0 ≲ e−2ct∥u0∥2
H−s , (34)

and

IK1 ≲ e−2ct∥u1∥2
Hs−1 . (35)



Sketch of the proof

The final case when δ < |βm,π | < N.

IK0 ≲ e−2ct∥u0∥2
Hs , (36)

and

IK1 ≲ e−2ct∥u1∥2
Hs−1 . (37)

Combining all the cases for |βm,π |, that is, ((32), (33)), ((34), (35)), and ((36), (37)) along with
(31), we obtain Ḣs-decay estimate for the solution to linear system (16) as

∥u(t, ·)∥Ḣs ≲ (1 + t)−
s+γ
ν

(
∥u0∥Hs∩Ḣ−γ + ∥u1∥Hs−1∩Ḣ−γ

)
for any t ≥ 0.
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∥u0∥Hs∩Ḣ−γ + ∥u1∥Hs−1∩Ḣ−γ
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Mild solutions of semilinear damped wave equations

Consider the inhomogeneous system
utt +Ru + ut = F(t, x), x ∈ G, t > 0,

u(0, x) = u0(x), x ∈ G,

ut(0, x) = u1(x), x ∈ G.

(38)

By applying Duhamel’s principle, the solution to the above system can be written as

u(t, x) = u0 ∗ E0(t, x) + u1 ∗ E1(t, x) +
∫ t

0
F(s, x) ∗ E1(t − s, x) ds,

where ∗ denotes the group convolution product on G with respect to the x variable, and E0 and
E1 represent the propagators to (38) in the homogeneous case F = 0 with initial data
(u0, u1) = (δ0, 0) and (u0, u1) = (0, δ0), respectively.



Mild solutions of semilinear damped wave equations

A function u is said to be a mild solution to (38) on [0, T ] if u is a fixed point for the integral
operator N : u ∈ Xs(T ) 7→ Nu(t, x), given by

Nu(t, x) := ulin(t, x) + unon(t, x), (39)

in the energy evolution space Xs(T )
.
= C ([0, T ],Hs(G)) , s ∈ (0, 1], equipped with the norm

∥u∥Xs(T ) := sup
t∈[0,T ]

(
(1 + t)

γ
ν ∥u(t, ·)∥L2 + (1 + t)

s+γ
ν ∥u(t, ·)∥Ḣs

)
(40)

with γ > 0, where
ulin(t, x) = u0 ∗ E0(t, x) + u1 ∗ E1(t, x)

is the solution to the corresponding linear Cauchy problem (38), and

unon(t, x) =
∫ t

0
F(s, x) ∗ E1(t − s, x) ds.



Damped wave equation on graded Lie groups: Global existence

Theorem 3 (Dasgupta, K., Mondal and Ruzhansky 2024)
Let s ∈ (0, 1] and γ ∈

(
0, Q

2

)
. Assume that an exponent p satisfies

1 < p ≤
Q

Q − 2s
and p

{
> pCrit (Q, γ, ν) := 1 + 2ν

Q+2γ if γ ≤ γ̃,

≥ 1 + 2γ
Q if γ > γ̃,

(41)

where γ̃ denotes the positive root of the quadratic equation 2γ̃2 + Qγ̃ − νQ = 0, i.e.,

γ̃ =
−Q+

√
Q2+8νQ
4 . Then, there exists a small positive constant ε0 such that for any

(u0, u1) ∈ As := (Hs ∩ Ḣ−γ )× (L2 ∩ Ḣ−γ ) satisfying ∥(u0, u1)∥As = ε ∈ (0, ε0], the
Cauchy problem for the semilinear damped wave equation

utt +Ru + ut = |u|p, x ∈ G, t > 0,

u(0, x) = εu0(x), x ∈ G,

ut(0, x) = εu1(x), x ∈ G,

has a uniquely determined Sobolev solution u ∈ C ([0,∞),Hs) . Moreover, the solution
satisfies the following estimate:

∥u(t, ·)∥Ḣs
L

≲ (1 + t)−
s+γ

2 ∥(u0, u1)∥As .



Damped wave equation on graded Lie groups: Global existence

Tools used in the proof:
▶ We use the group Fourier transform on the graded Lie group G concerning the spatial

variable.

▶ Sobolev estimates of solutions to the linear Cauchy problem

▶ Hardy-Littlewood-Sobolev inequality and Gagliardo-Nirenberg inequality

▶ Banach’s fixed point theorem on appropriate space

Remarks
▶ The technical restriction on 1 < p ≤ Q

Q−2s in the above theorem is due to an application of
the Gagliardo-Nirenberg type inequality.

▶ Some examples for the admissible range of the exponent p for the global-in-time existence
result in certain low homogeneous dimension graded Lie group G are as follows:
• When Q = 1, 2, we take s ∈ (0, 1] and γ ∈ (0, Q

2 ) and the exponent satisfies

1 +
2ν

Q + 2γ
< p

{
< ∞ if Q ≤ 2s,
≤ Q

Q−2s if Q > 2s.

• When Q = 3, 4, we take s ∈ (0, 1] and γ ∈ (0, Q
2 ) and the exponent satisfies

1 + 2ν
Q+2γ < p ≤ Q

Q−2s if 0 < γ ≤ γ̃

1 + 2γ
Q ≤ p ≤ Q

Q−2s if γ̃ < γ < Q
2 .
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variable.

▶ Sobolev estimates of solutions to the linear Cauchy problem

▶ Hardy-Littlewood-Sobolev inequality and Gagliardo-Nirenberg inequality

▶ Banach’s fixed point theorem on appropriate space

Remarks
▶ The technical restriction on 1 < p ≤ Q

Q−2s in the above theorem is due to an application of
the Gagliardo-Nirenberg type inequality.

▶ Some examples for the admissible range of the exponent p for the global-in-time existence
result in certain low homogeneous dimension graded Lie group G are as follows:
• When Q = 1, 2, we take s ∈ (0, 1] and γ ∈ (0, Q

2 ) and the exponent satisfies

1 +
2ν

Q + 2γ
< p

{
< ∞ if Q ≤ 2s,
≤ Q

Q−2s if Q > 2s.

• When Q = 3, 4, we take s ∈ (0, 1] and γ ∈ (0, Q
2 ) and the exponent satisfies

1 + 2ν
Q+2γ < p ≤ Q

Q−2s if 0 < γ ≤ γ̃

1 + 2γ
Q ≤ p ≤ Q

Q−2s if γ̃ < γ < Q
2 .



Damped wave equation on graded Lie groups: Blow-up result

Theorem 4 (Dasgupta, K. Mondal and Ruzhansky 2024)
Let G be a graded Lie group of homogeneous dimension Q and let R be a positive Rockland
operator given by

R :=
n∑

j=1

(−1)
ν0
νj aj X

2
ν0
νj

j , with a1, a2, . . . , an > 0, (42)

of homogeneous degree ν := 2ν0, where ν0 is any common multiple of dilations weights
ν1, . . . , νn on G and {X1,X2, . . . ,Xn} is a strong Malcev basis of the Lie algebra g of G.
Let γ ∈

(
0, Q

2

)
and the exponent p satisfies 1 < p < p(Q, γ, ν) := 1 + 2ν

Q+2γ . We also

assume that the non-negative initial data (u0, u1) ∈ Ḣ−γ × Ḣ−γ satisfies

u0(x) + u1(x) ≥ C1⟨x⟩−Q( 1
2 +

γ
Q )(log(e + |x|))−1, x ∈ G, (43)

where C1 is a positive constant. Then, there is no global (in-time) weak solution to
utt +Ru + ut = |u|p, x ∈ G, t > 0,

u(0, x) = εu0(x), x ∈ G,

ut(0, x) = εu1(x), x ∈ G.



Table

Q ν Global Existence Blow-up

1, 2 ≥ 2 1 + 2ν
Q+2γ < p ≤ Q

(Q−2s)+
1 < p < 1 + 2ν

Q+2γ

3 2
1 + 4

3+2γ < p ≤ Q
Q−2s if 0 < γ ≤ γ̃

1 + 2γ
Q ≤ p ≤ Q

Q−2s if γ̃ < γ < Q
2 .

1 < p < 1 + 4
3+2γ

3 4 1 + 8
3+2γ < p ≤ Q

(Q−2s) 1 < p < 1 + 8
3+2γ

4, 5, 6 2

1 + 2ν
Q+2γ < p ≤ Q

Q−2s if 0 < γ ≤ γ̃

1 + 2γ
Q ≤ p ≤ Q

Q−2s if γ̃ < γ < Q
2 .

1 < p < 1 + 2ν
Q+2γ

Table: Ranges of p for global-in-time existence and blow-up of weak solutions for a pair (Q, ν).
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Sharp lifespan estimates for weak solutions

We define the lifespan Tε as the maximal existence time for solution of (9), i.e.,

Tε := sup
{

T > 0 : there exists a unique local-in-time solution to the Cauchy

problem (9) on [0, T ) with a fixed parameter ε > 0
}
. (44)

We denote Tw,ε and Tm,ε as the lifespan for a weak and mild solution to the Cauchy problem
(9), respectively.

Theorem 5 (Dasgupta, K. Mondal and Ruzhansky 2024)
Let G be a graded Lie group of homogeneous dimension Q and let R be a positive Rockland
operator of homogeneous degree ν ≥ 2. Let γ ∈ (0, γ̃) and let the exponent p satisfy
1 < p < pCrit (Q, γ, ν) such that

1 +
2γ

Q
≤ p

{
< ∞ if Q ≤ 2,
≤ Q

Q−2 if Q > 2. (45)

We also assume that (u0, u1) ∈ A1 such that ∥(u0, u1)∥A1 < ε. Then, there exists a constant
ε0 such that for every ε ∈ (0, ε0], the lifespan Tm,ε of mild solutions u to the Cauchy problem (9)
satisfies the following lower bound condition:

Tm,ε ≥ Cε
−
(

1
p−1 −( Q

2ν + γ
ν )

)−1

,

where the positive constant C is independent of ε, but may depends on p,Q, γ as well as
∥(u0, u1)∥A1 .
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Sharp lifespan estimates for weak solutions

Theorem 6 (Dasgupta, K., Mondal and Ruzhansky 2024)
Let G be a graded Lie group of homogeneous dimension Q and let R be a positive Rockland
operator of homogeneous degree ν ≥ 2. Let γ ∈ (0, γ̃) and let the exponent p satisfy
1 < p < pCrit (Q, γ, ν). We also assume that (u0, u1) ∈ A1 such that ∥(u0, u1)∥A1 < ε.
Then, there exists a constant ε0 such that for every ε ∈ (0, ε0], the lifespan Tm,ε of mild
solutions u to the Cauchy problem (9) satisfies the following upper bound condition:

Tw,ε ≤ Cε
−
(

1
p−1 −( Q

2ν + γ
ν )

)−1

.

where the positive constant C is independent of ε, but may depends on p,Q, γ as well as
∥(u0, u1)∥A1 .

Remark
Therefore, if the exponent p satisfies 1 + 2γ

Q ≤ p ≤ Q
Q−2 , then we can claim the sharp estimate

for the lifespan Tε as

Tε

{
= ∞ if p > pCrit (Q, γ, ν),

≃ Cε
−
(

1
p−1 −( Q

2ν + γ
ν )

)−1

if p < pCrit (Q, γ, ν),

for some γ ∈
(
0, Q

2

)
, where the positive constant C is independent of ε.
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Damped wave equation on the Heisenberg group: Critical exponent case

Theorem 7 (Berikbol, K., Mondal, Ruzhansky, 2024)
Let Hn be the Heisenberg group with the homogeneous dimension Q = 2n + 2 and let ∆H be
the sub-Laplacian on Hn. Let γ ∈

(
0, Q

2

)
and let the exponent p satisfy

p = pCrit(Q, γ) := 1 +
4

Q + 2γ
.

We assume that the non-negative initial data (u0, u1) ∈ Ḣ−γ
∆H

× Ḣ−γ
∆H

satisfies

u0(η) + u1(η) ≥ C1⟨η⟩−Q( 1
2 +

γ
Q )(log(e + |η|))−1, η = (x, y , τ) ∈ Hn,

where C1 is a positive constant. Then, there is no global (in-time) weak solution to
utt −∆Hu + ut = |u|p, g ∈ Hn, t > 0,

u(0, g) = u0(g), g ∈ Hn,

ut(0, g) = u1(g), g ∈ Hn.

Conjecture:
The critical case p := pCrit(Q, γ, ν) belongs to the blow-up range for the damped
wave equation on graded Lie group.
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Diffusion phenomenon of damped wave equations on the Heisenberg group

Now consider the following Cauchy problem for the heat equation{
wt −∆Hn w = 0, g ∈ Hn, t > 0

w(0, g) = u0(g) + u1(g), g ∈ Hn,
(46)

where (u0, u1) ∈
(

Hs
∆H

∩ Ḣ−γ
∆H

)
×

(
Hs
∆H

∩ Ḣ−γ
∆H

)
with s ≥ 0 and γ ∈ R such that

s + γ ≥ 0.

We have the following Ḣs
∆H

-decay estimate for the solution to the Cauchy problem (46) as

∥w(t, ·)∥Ḣs
∆H

≲ (1 + t)−
s+γ

2

(
∥u0∥Hs

∆H
∩Ḣ−γ

∆H
+ ∥u1∥Hs

∆H
∩Ḣ−γ

∆H

)
(47)

for any t ≥ 0. Recall that, we have the following Ḣs
∆H

-decay estimate for the solution to linear
damped wave equation

∥u(t, ·)∥Ḣs
∆H

≲ (1 + t)−
s+γ

2

(
∥u0∥Hs

∆H
∩Ḣ−γ

∆H
+ ∥u1∥Hs−1

∆H
∩Ḣ−γ

∆H

)
, (48)

for any t ≥ 0.
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∩Ḣ−γ

∆H

)
(47)

for any t ≥ 0. Recall that, we have the following Ḣs
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Diffusion phenomenon of damped wave equations on the Heisenberg group

Theorem 8 (Berikbol, K., Mondal, Ruzhansky, 2024)
Let (u0, u1) ∈

(
Hs
∆H

∩ Ḣ−γ
∆H

)
×

(
Hs
∆H

∩ Ḣ−γ
∆H

)
with s ≥ 0 and γ ∈ R such that

s + γ + 2 ⩾ 0. Let u and w be the solutions to the linear Cauchy problems (9) and (46),
respectively. Then, u − w satisfies

∥u(t, ·)− w(t, ·)∥Ḣs
∆H

≲ (1 + t)−
s+γ

2 −1
(
∥u0∥Hs

∆H
∩Ḣ−γ

∆H
+ ∥u1∥Hs

∆H
∩Ḣ−γ

∆H

)
.

▶ We see that the decay is enhanced by a factor of (1 + t)−1 when we subtract the solution
to the damped wave equation by the solution to heat equation (46).

▶ This concludes that the diffusion phenomenon is also valid in the framework of the negative
order Sobolev space Ḣ−γ

∆H
.
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