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Riemannian symmetric spaces of noncompact type (RSSN)

◮ G semisimple Lie group
(noncompact, connected, finite center)

◮ K maximal compact subgroup of G

◮ RSSN: X = G/K Cartan-Hadamard manifold

◮ Cartan decomposition ∼ generalized polar decomposition:

G = K (exp a+ )K ∋ x = k1(exp x+)k2

◮ Haar measure: dx = const. δ(x+)dk1 dx+dk2

where δ(x+) =
∏

α∈Σ+
(sinh〈α, x+〉)mα ∼ e 〈2ρ,x+〉

and ρ =
∑

α∈Σ+

mα

2 α ∈ a
+

◮ Dimensions:

ℓ = dim a rank

d = ℓ +
∑

α∈Σ+
mα dimension

D = ℓ + 2|Σ+
r | pseudo-dimension
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Fourier analysis on RSSN [Harish-Chandra, Helgason]

There is a Fourier transform on RSSN X = G/K .
For bi–K–invariant functions f : G → C, it reduces to

Spherical Fourier transform

Hf (λ) =

∫

G
dx f (x) ϕ−λ(x) ∀ λ ∈ a

Inversion formula

f (x) = const.

∫

a

dλ |c(λ)|−2 ϕλ(x)Hf (λ)

◮ The spherical functions ϕλ(x) are analogs of Bessel functions
for the Euclidean Fourier transform of radial functions

◮ Behavior of ϕλ(x)

{

a lot of information available

still not fully understood

◮ The Plancherel measure |c(λ)|−2 is known explicitely
[Gindikin-Karpelevich]
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Two main dispersive PDE on RSSN

Schrödinger equation

(S)

{

i ∂tu(t, x) ± ∆x u(t, x) = F (t, x)

u(0, x)= f (x)

Wave equation

(W)

{

∂ 2
t u(t, x) − ∆xu(t, x) = F (t, x)

u(0, x)= f (x), ∂t |t=0 u(t, x)=g(x)

Remarks.

◮ Similar analysis and properties

◮ Simpler statements for Schrödinger
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Schrödinger equation on RSSN

Homogeneous solution

u(t, x) = e i t ∆ f (x) = (f ∗ st)(x)

where the Schrödinger kernel

st(x) = const.

∫

a

dλ |c(λ)|−2 ϕλ(x) e−i (‖ρ‖2+‖λ‖2)t

is formally the heat kernel with imaginary time

Inhomogeneous solution (Duhamel’s formula)

u(t, · ) = e i t ∆ f − i

∫ t

0
ds e i (t−s)∆ F (s, · )
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Kernel estimates

Rank one [A-Pierfelice 2009]

For t ∈R∗ and r ≥ 0,

|st(r)| . e −ρr ×
{

(1+r)
d−1

2 |t|− d
2 if 0< |t| ≤ 1+r

(1+r) |t|− 3
2 if |t| ≥ 1+r

Higher rank [A-Meda-Pierfelice-Vallarino-Zhang 2023]

There exists n > 0 such that, for t ∈R∗ and x ∈G/K ,

|st(r)| . e−〈ρ,x+〉 (1+‖x+‖)n ×
{

|t|− d
2 if 0< |t| < 1

|t|− D
2 if |t| ≥ 1
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Two important inequalities

Dispersive inequality [A-P, A-M-P-V-Z]

Let 2< q ≤ ∞. Then

‖e i t ∆‖Lq ′→Lq .







|t|−( 1
2
− 1

q
)d if 0< |t|< 1

|t|− D
2 if |t|≥ 1

Strichartz mixed norm :

‖u(t, x)‖L
p
t L

q
x

=
[

∫

R

dt
(

∫

G/K
dx |u(t, x)|q

)

p
q

]

1
p

Strichartz inequality [A-P, A-M-P-V-Z]

Solutions to (S) satisfy

‖u(t, x)‖
L

p̃
t L

q̃
x

. ‖f (x)‖
L2

x

+ ‖F (t, x)‖
L

p′

t L
q′

x

for all admissible couples (p, q), (p̃, q̃)
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Strichartz inequality (continued)

Definition

A couple (p, q) is admissible if ( 1
p
, 1

q
) belongs to the triangle

{

( 1
p
, 1

q
) ∈

(

0, 1
2

]

×
(

0, 1
2

) ∣

∣

1
p

≥ d
2

(1
2 − 1

q

)}

∪
{(

0, 1
2

)}

1
p

1
q

1
2

1
2

− 1
d

0 1
2

1
p

= d
2

(

1
2

− 1
q

)
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Main tools

◮ Smooth barycentrix decomposition of Weyl chambers
 kernel estimates

◮ Improved Hadamard parametrix for the wave operator
cos t

√
−∆ on G/K

◮ Kunze-Stein phenomenon
 dispersive inequality for |t| large

◮ T T ∗ argument (Ginibre-Velo, Keel-Tao)
 Strichartz inequality

Suitable version of the Kunze-Stein phenomenon

Let 2≤ q < ∞. Then there exists a constant C > 0 such that,
for every bi-K -invariant (measurable) function k on G ,

∥

∥ · ∗ k
∥

∥

Lq ′→Lq ≤ C
{

∫

G
dx ϕ0(x) |k(x)|

q
2

}

2
q
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Motivation

The analysis of oscillating integrals such as

st(x) = const.

∫

a

dλ |c(λ)|−2 ϕλ(x) e−i (‖ρ‖2+‖λ‖2)t

requires integrations by parts. The Plancherel density

|c(λ)|−2 =
∏

α∈Σ+
red

∣

∣

∣cα

(

〈α,λ〉
‖α‖2

)∣

∣

∣

−2

is a product of one-dimensional differentiable symbols but,
in higher rank, it is not a differentiable symbol in general.
Thus differentiating arbitrarily |c(λ)|−2

produces no additional global decay at infinity.

We overcome this problem
by splitting up each Weyl chamber w.a+ into subsectors w.Sj ,
where we differentiate along a suitable direction w.λj .
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Rough barycentric decomposition

∑

w∈W

∑

1≤j≤ℓ
1Iw.Sj

= 1 a.e.

◮ Simple roots : α1, . . . , αℓ

◮ Dual basis of a : {λ1, . . . , λℓ}
 a

+ = R+ λ1 + . . . +R+ λℓ

◮ Subsectors of a
+ :

Sj = {H ∈a
+ |〈αj ,H 〉= max1≤k≤ℓ〈αk ,H 〉} ∀ 1≤ j ≤ ℓ

 a
+ =

⋃

1≤j≤ℓ Sj

 a =
⋃

w∈W w.a+ =
⋃

w∈W

⋃

1≤j≤ℓ w.Sj
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Examples of barycentric subdivisions of a+
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Figure: Root systems A2 and A3
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Smooth barycentric decomposition

∑

w∈W

∑

1≤j≤ℓ
χw.Sj

= 1 on ar{0}

◮ χw.Sj
is a smooth homogeneous symbol of order 0 on ar{0}

◮ Dichotomy : for every α ∈ Σ, w ∈W and 1≤ j ≤ ℓ,

◮ either 〈α, w.λj 〉 = 0
◮ or 〈α, λ〉 ≍ ‖λ‖ ∀ λ ∈ supp χw.Sj

Application

Away from the origin, each function

χw.Sj
(λ) |c(λ)|−2

behaves as a symbol of order n− ℓ under differentiation along w.λj ,

i.e.,
∣

∣∂ N
w.λj

{

χw.Sj
(λ) |c(λ)|−2

}∣

∣ . |λ|n−ℓ−N ∀ |λ|&1
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The End

Thank you for your attention
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