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Complex orthogonal polynomials

µ ≥ 0 positive Borel measure, rapidly decreasing on C, of infinite support,
so that the orthogonal polynomials Pn(z), n ≥ 0, are well defined by

Pn(z) = γnz
n + O(zn−1), γn > 0,

and
〈Pn,Pk〉2,µ = δnk .

Real moment data (observables) and complex orthogonal
polynomials are interchangeable via elementary matrix operations.



Christoffel-Darboux kernel

KN(z ,w) =
N−1∑
k=0

Pk(z)Pk(w),

is the reproducing kernel in the space CN [z ] of polynomials of degree less
than N:

〈h,KN(·,w)〉2,µ = h(w), deg h < N.

E. B. Christoffel, Über die Gaussische Quadratur und eine
Verallgemeinerung derselben, J. Reine Angew. Math. 55 (1858), 61-82.

G. Darboux, Mémoire sur l’approximation des fonctions de trés-grands
nombres, et sur une classe étendue de developpements en série, Liouville J.
(3) 4 (1878), 5-56; 377-416.



Christoffel function

|h(w)| ≤ ‖h‖‖KN(·,w)‖

with optimal solution KN(·,w):

max
|h(w)|
‖h‖

= ‖KN(·,w)‖,

or equivalently

ΛN(µ,w) := min
‖h‖2

2,µ

|h(w)|2
=

1

KN(w ,w)

where deg h < N and h(w) 6= 0.

The asymptotics of Christoffel’s function ΛN(µ,w) were and remain
central for many problems of mathematical analysis.



Moment indeterminateness (see Seminar 2 at IISC)

Note that the orthogonal polynomials Pn(z) depend only on the moments 
of the underlying measure µ:

ckn =

∫
C
zkzndµ(z), k , n ≥ 0.

Solving the moment problem (i.e. recovery of µ from (ckn)∞k,n=0)
encounters a natural and difficult obstacle: is the measure µ unique?

M. Riesz (1923), R. Nevanlinna (1924): If suppµ ⊂ R, then the moments
determine the measure if and only if

lim
N→∞

ΛN(µ, z) = 0,

for at least one z ∈ C \ R (and hence for all).



Maximal point masses

Note that always ΛN+1(µ, z) ≤ ΛN(µ, z), so

Λ(µ, z) = lim
N→∞

ΛN(µ, z)

exists.

In case x ∈ R,

µ({x}) ≤ Λ(µ, x) = min

∫
|h(y)|2dµ(y), h(x) = 1,

and the upper bound is attained (by extremal solutions of the moment
problem).



The unit circle
w(t) ≥ 0 integrable weight on [−π, π). With geometric mean

G (w) = exp(
1

2π

∫ π

−π
lnw(t)dt),

if w satisfies Szegö’s condition∫ π

−π
lnw(t)dt > −∞,

and G (w) = 0 otherwise.

Szegö (1914) Λ(w(t)dt, 0) = G (w).

Formulated equivalently as an extremum problem, with z = e it :

lim
n→∞

min
Aj

1

2π

∫ π

−π
|zn + A1z

n−1 + . . .+ An|2w(t)dt = G (w).



Density of complex polynomials in Lebesgue space

µ ≥ 0 positive Boreal measure on [−π, π) with Lebesgue decompsoition

µ = w(t)dt + µsc + µd .

where w(t) has bounded variation.

Kolmogorov (1941), Krein (1945) The system 1, z , z2, . . . is dense in
Lp(µ), p ≥ 1, if and only if∫ π

−π
| lnw(t)|dt =∞.

Hint: By Szegö’s Theorem, if G (w) > 0, then e−it cannot be
approximated by 1, e it , e i2t , . . . .



Accelerated convergence of Fourier series
Let µ ≥ 0 be a positive measure supported on a compact set I ⊂ R. For a
continuous function f ∈ C (I ) we set

SN(α, f , x) =
N−1∑
k=0

〈f ,Pk〉Pk(x).

Then

sup
‖f ‖∞,I≤1

|SN(α, f , x)|2 ≤ ‖f ‖2
2,αKN(α; x , x) ≤ α(I )KN(α; x , x).

Consequently

|f (x)− SN(α, f , x)| = |f (x)− Q(x)− SN(α, f − Q, x)| ≤

inf
degQ<N

‖f − Q‖∞,K (1 + α(I )
√
KN(α : x , x)).

Lebesgue (1905) was the first to use this scheme for studying the
convergence of Fourier type developments.



The unit disk

µ = dA on D = {z ∈ C : |z | < 1}

KN(z ,w)→ K (z ,w) =
1

π(1− zw)2
, z ,w ∈ D,

the Bergman kernel, and

KN(z , z) =
N + 1

π

1

|z |2 − 1
|z |2N+2(1 + O(1/N)), |z | > 1.

measures how fast a polynomial of degree less than N lifts outside the
disk, keeping its square norm average on D bounded.

Classical asymptotics extended to more general domains by Carleman
(1922) and Suetin (1969).



G = ∪Gj an archipelago, i.e. a finite union of simply connected domains,
with real analytic boundary Γ = ∂G and µ = χGdArea.

”Observables” are finitely many moments

amn =

∫
zmzn dµ(z)

such as derived from geometric tomography.
They determine the complex orthogonal polynomials Pn(z), 0 ≤ n ≤ N,
and the CD-kernel

Kn(z ,w) =
n−1∑
j=0

Pj(z)Pj(w).

1. Shape reconstruction in 2D



Christoffel function as defining function of the archipelago

Normalized Christoffel function

γn(z) = [Kn(z , z)]−1/2

satisfies:

√
πdist(z , Γ) ≤ γn(z) ≤ Cdist(z , Γ)

for z ∈ G , close to Γ. Moreover:

γn(z) = O(
1

n
), z ∈ Γ.

Outside G this function decreases exponentially to zero. On analytic
boundaries one has sharp estimates.



Reconstruction experiments
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       2. Spectral analysis of dynamical systems
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Point spectrum 

AC spectrum [Mate, Nevai, Totik, 91’]
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Detecting SC spectrum 
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Detecting SC spectrum 
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Detecting SC spectrum - CDFs 
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Detecting SC spectrum 
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Detecting SC spectrum – Singularity indicator  
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Cat map 
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 Milan Korda 

Cat map 
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Cat map 
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Lorenz system 
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Lorenz system 
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Lorenz system 
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Lorenz system 

 27 



   

Lorenz system 
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Cavity flow 
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Cavity flow 
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Cavity flow 
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Cavity flow 
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Cavity flow – distribution functions 
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Example – Cat map 

 34 



   

Detecting SC spectrum - CDFs 
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Detecting SC spectrum - CDFs 
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Detecting SC spectrum – Singularity indicator  
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1 outlier, N = 300 shape of square

3. Detection of outliers in statistical data



3 outliers, N = 300 disk cloud, ”real” level lines do not separate well,
”complex” do



7 outliers, N = 300 disk cloud, ”real” level lines do not separate well,
”complex” do



7 outliers, N = 600 disk cloud.



15 outliers, N = 900 square cloud.



µN = τN + σN , τN =
1
N

N∑
j=s+1

δzj ≈ τ, σN =
1
N

s∑
j=1

δzj .

1 From discrete τN to continuous τ :
K µN

n (z, z) ≈ K τ+σN
n (z, z)?

2 Level lines of K τ
n (z, z) approach supp(τ) ?

3 Bounds for K µN
n (z, z)

upper bounds on supp(τ + σN) ?
lower bounds outside supp(τ + σN) ?

4 Leverage score
close to 0 on supp(τN) ?
close to 1 on supp(σN) ?

Perturbation of CD kernels



Comparison of measures and kernel (1)
Set Pn = span{pµ0 , ...,p

µ
n} (independent of µ...), then for all

z ∈ C, n ≥ 0

1
K µ

n (z, z)
= 1

/
n∑

j=0

|pµj (z)|
2 = min

p∈Pn

(‖p‖2,µ
|p(z)|

)2
.

Lem 1: if µ ≤ ν then for all z

K µ
n (z, z) ≥ K ν

n (z, z).



Comparison of measures and kernel (2)
Set Pn = span{pµ0 , ...,p

µ
n } (independent of µ...), then for all z ∈ C,

n ≥ 0
1

Kµ
n (z, z)

= 1

/
n∑

j=0

|pµj (z)|
2 = min

p∈Pn

(‖p‖2,µ

|p(z)|

)2
.

Consider (modified) Grammian

Mn(ν, µ) =
(
〈pµj ,p

µ
k 〉ν,2

)
j,k=0,...,n

,
(‖p‖2,ν
‖p‖2,µ

)2
=
ξ∗Mn(ν, µ)ξ

ξ∗ξ
.

Lem 2: if spec(Mn(ν, µ)) ⊂ [1
2 ,

3
2 ] then

1
2

K ν
n (z, z) ≤ K µ

n (z, z) ≤
3
2

K ν
n (z, z).



From discrete τN to continuous τ

µN = τN + σN , τN =
1
N

N∑
j=s+1

δzj ≈ τ, σN =
1
N

s∑
j=1

δzj .

Cor 1: Suppose (H) : spec(Mn(τN , τ)) ⊂ [1
2 ,

3
2 ]. Then for all z

1
2

K τN
n (z, z) ≤ K τ

n (z, z) ≤
3
2

K τN
n (z, z),

1
2

K µN
n (z, z) ≤ K τ+σN

n (z, z) ≤ 3
2

K µN
n (z, z).

Recall, e.g., from [A. Chkifa, A. Cohen, G. Migliorati, F. Nobile, and R.
Tempone’2015]: for s = 0, if z1, ..., zN are samplings of i.i.d.
random variables with law given by measure τ then

Prob
(

(H) is true
)
≥ 1−2(n+1) exp

(
−
log(e

2 )

2
N

maxz∈supp(τ) K τ
n (z, z)

)
.



From discrete τN to continuous τ

µN = τN + σN , τN =
1
N

N∑
j=s+1

δzj ≈ τ, σN =
1
N

s∑
j=1

δzj .

Cor 1: Suppose (H) : spec(Mn(τN , τ)) ⊂ [1
2 ,

3
2 ]. Then for all z

1
2

K τN
n (z, z) ≤ K τ

n (z, z) ≤
3
2

K τN
n (z, z),

1
2

K µN
n (z, z) ≤ K τ+σN

n (z, z) ≤ 3
2

K µN
n (z, z).

Recall, e.g., from [A. Chkifa, A. Cohen, G. Migliorati, F. Nobile, and R.
Tempone’2015]: for s = 0, if z1, ..., zN are samplings of i.i.d.
random variables with law given by measure τ then

Prob
(

(H) is true
)
≥ 1−2(n+1) exp

(
−
log(e

2 )

2
N

maxz∈supp(τ) K τ
n (z, z)

)
.



Level lines of K τ
n (z, z) approach supp(τ) ?

Thm 1: [Lasserre & Pauwels 2017]: if τ is area measure on some compact
S ⊂ Rd with S =Clos(Int(S)) then there exist explicit γn ∈ R such that the
Hausdorff distance between S = supp(τ) and

Sn = {z : K τ
n (z, z) ≤ γn}

tends to zero for n→∞.
Two ingredients of proof (works also for Cd ):

upper bounds for K τ
n (z, z) for z in compact subsets of Int(S)

through Lem 1 via area measures on small balls
classical for S ⊂ R,C, recent progress [Totik’2010] in case of
C2 boundary
recent progress [Kroó, Lubinsky 2013] in Cd ,Rd

lower bounds for K τ
n (z, z) for z in compact subsets of C \ S

through peak polynomials following [Kroó, Lubinsky 2013]
logarithmic potential theory (Siziak function) in C,
pluripotential theory in Cd ,Rd .

But so far no outliers !



Lower bounds for K µN
n (z, z) outside supp(τ + σN)

Lem 3: Under hypothesis (H) for z 6∈ supp(τ + σN) :

3
2

K µN
n (z, z)

K τ
n (z, z)

≥ K τ+σN
n (z, z)
K τ

n (z, z)

≥ det
(

Cτ
n (zj , zk )

)
j,k=0,...,s

/
det
(

Cτ
n (zj , zk )

)
j,k=1,...,s

with z0 = z, and Cτ
n (z,w) = K τ

n (z,w)√
K τ

n (z,z)K τ
n (w ,w)

.

Idea of proof: Writing vn(z) =
(

pτ0(z), ....,p
τ
n(z)

)
,

K τ+σN
n (z, z) = vn(z)Mn(τ + σN , τ)

−1vn(z)∗,

Mn(τ + σN , τ) = I +
1
N

VnV ∗n , Vn =
(

vn(z1), ..., vn(zs)
)
.



Main Theorem for one complex variable [BB, MP, ES, NS’19]

Consider τ area measure on compact simply connected set
S = supp(τ) ⊂ C, and let n,N →∞ such that (H) holds, and

max
z∈S

K τ
n (z, z)� N � min

j=1,...,s
exp(2ngS(zj ,∞)).

Then uniformly for z ∈ S ⊃ supp(τN) we have

1
N

KµN
n (z) = o(1),

uniformly on compact subsets of C \ supp(τ + σN)

1
N

KµN
n (z, z) ≥ 2

3N
exp(2ngS(z,∞))

s∏
j=1

exp(−2gS(zj , z))(1 + o(1)),

and for zk ∈ supp(σN)

1− 1
N

KµN
n (zk , zk ) ≤

N
KµN−δzk /N(zk , zk )

≤ 3N
2

exp(−2ngS(z,∞))
s∏

j=1,j 6=k

exp(2gS(zj , zk ))(1 + o(1)).



One complex versus 2 real variables

mihai
Highlight



Supports on algebraic varieties

Detecting a circle:



2D torus
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Figure: Dragon fly orientation with respect to the sun, on the torus. The curves
represent the empirical Christoffel function for different values of the degree.



2D sphere
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Figure: Each point represent the observation of a double star in the sky. They live
on the sphere and are associated to their longitude and latitude. The level sets
are those of the empirical Christoffel functions evaluated on the sphere in R3.
The degree is 8. The band which is highlighted by the level sets corresponds to
the Milky Way.



2D torus lying on 3D sphere
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Figure: Each point two dihedral angles for a Glycine amino acid. These angles are
used to describe the global three dimensional shape of a protein. They live on the
bitorus. The level sets are those of the empirical Christoffel functions evaluated
on the sphere in R4. The degree is 4.
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3. Approximation in the mean by complex polynomials

Let µ be a positive, compactly supported measure on C. We
denote by P2(µ) the closure of complex polynomials in L2(µ), and
R2(F , µ) the closure in L2(µ) of rational functions with poles
disjoint of F .

In general, the spectral analysis of the multiplier
Sµ = Mz : P2(µ) −→ P2(µ) reveals (constructively) the nature of
the measure µ. Beyond the spectral theorem for normal operators.

Problem. When is P2(µ) = L2(µ), or R2(F , µ) = L2(µ)?

Analytic bounded point evaluations on algebraic curves



Thomson’s Theorem, 1991

Let µ be a positive Borel measure, compactly supported on C.
There exists a Borel partition ∆0,∆1, . . . of the closed support of
µ with the following properties:
1) P2(µ) = L2(µ0)⊕ P2(µ1)⊕ P2(µ2)⊕ . . ., where
µj = µ|∆j

, j ≥ 0;
2) Every operator Sµj = Mz , j ≥ 1, is irreducible with spectral
picture:

σ(Sµj ) \ σess(Sµj ) = Gj , simply connected ,

and
supp µj ⊂ Gj , j ≥ 1;

3) If µ0 = 0, then any element f ∈ P2(µ) which vanishes [µ]-a.e.
on G = ∪jGj is identically zero.

Analytic bounded point evaluations on algebraic curves



Analytic bounded point evaluations

Let µ be a positive Borel measure, compactly supported on C.
Then

P2(µ) 6= L2(µ)

if and only if there exists an open set U of analytic bounded point
evaluations

|f (a)| ≤ C‖f ‖2,µ, f ∈ C[z ], a ∈ U,

where C does not depend on a.

Analytic bounded point evaluations on algebraic curves



Brennan’s Theorem, 2008

Let µ be a positive measure without point masses, compactly
supported on C. Assume the set F contains the closed support of
the measure µ, and the complement C \ F does not have
components of arbitrarily small diameter.

Then R2(F , µ) 6= L2(µ) if and only if R2(F , µ) admits analytic
bounded point evaluations:

|f (a)| ≤ C‖f ‖2,µ, f ∈ R2(F , µ), a ∈ U (open set).

Novel technical ingredient and simplification: X. Tolsa
semi-additivity of analytic capacity.

Analytic bounded point evaluations on algebraic curves



Classification of irreducible subnormal operators...

is a matter of complex hermitian geometry: the kernel of the linear
pencil

z 7→ ker(S∗ − z)

is, on the cloud of analytic bounded point evaluations, a hermitian
line bundle. Curvature type invariants determine the unitary orbit
of the generating operator S .

Analytic bounded point evaluations on algebraic curves



Density of complex polynomials on the unit circle

Theorem (Kolmogorov, 1941, Krein, 1945) For a positive
measure µ supported on T, one has P2(µ) = L2(µ) if and only if∫ π

−π
| logµ′|dt =∞.

Or equivalently, the multiplier Mz is a normal operator. In the
opposite case, (Szegő’s limit theorem gives even more),

dim ker(Mz − w)∗ = 1, |w | < 1,

and hence the Fredholm index of Mz is −1 at every point of the
unit disk.

Analytic bounded point evaluations on algebraic curves



Carry the analysis on affine, algebraic curves

Theorem (S. Biswas-M.P., 2022) Let X be a rational curve in
Cn and let µ be a positive Borel measure without point masses,
supported by a compact subset of X . Then P2(µ) 6= L2(µ) if and
only if there are analytic P2(µ)-bounded point evaluations.

Analytic bounded point evaluations on algebraic curves



Idea of proof

Let R = (r1, r2, . . . , rn) be an n-tuple of rational functions which
properly parametrizes the rational affine curve X ⊂ Cn. That is,
denoting by S ⊂ C the poles of R, the holomorphic map

R : C \ S −→ X

is one to one, except finitely many points, and it covers X except
finitely many points.
Let ρ denote a sufficiently large radius, so that the support of the
measure µ is contained in the ball B(0, ρ). The pull-back

U = R−1B(0, ρ)

is an open subset of C, of finite connectivity, with piece-wise
smooth boundary. In particular we can assume that every
connected component of the complement of U has positive
diameter.

Analytic bounded point evaluations on algebraic curves



The restricted analytic map

R : U −→ B(0, ρ)

has finite fibres, hence it is proper. Grauert’s finiteness theorem
implies that the direct image sheaf R∗OU is coherent and

R∗OU(B(0, ρ)) = O(U).

The coherence of R∗OU and the injectivity of R modulo a finite
set imply that

dimO(U)/R∗O(B(0, ρ)) <∞.

One can define a pull-back measure ν on U∫
φ dµ =

∫
φ ◦ R dν,

for every continuous function φ : B(0, ρ) −→ C.
Analytic bounded point evaluations on algebraic curves



Let R2(U, ν) denote the closure in L2(ν), of rational functions
with poles on the complement of U. Runge’s approximation
theorem implies that R2(U, ν) is also the closure of the algebra
O(U) in L2(ν). Hence

There exist analytic bounded point evaluations with respect to
P2(µ) if and only if there exists analytic bounded point evaluations
with respect to R2(U, ν).

Brennan’s Theorem completes the proof.
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Invariant subspaces for subnormal tuples

A commuting subnormal tuple with Taylor’s joint spectrum
contained in a rational curve admits joint invariant subspaces.

As a matter of fact, a continuum of invariant subspace of
codimension one exists, parametrized by a relatively open subset of
the joint spectrum.
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Newton’s Trident: xy = x3 + 1
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Maclaurin trisectrix: x(x2 + y 2) = a(3x2 − y 2),

x = a3−t2

1+t2 , y = tx .
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The general case

Resolution of singularities and our base change technique lead to
the following Open Question:

Let X be an open Riemann surface of finite genus, and let µ be a
positive Borel measure on X without point masses. Let U ⊂ X be
an open, relatively compact subset of X , with finitely many
components of X \ U, none reduced to a point. Assume the closed
support of the measure µ is contained in U. Then analytic
functions O(U) are dense in L2(µ) if and only if there are no
corresponding bounded analytic point evaluations.
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Uniform approximation on Riemann surfaces

Let X be an open Riemann surface. Assume that the measure µ is
supported by a piecewise smooth curve Γ ⊂ X with the property
that the complement X \ Γ is connected. Then P2(µ) = L2(µ).

Proof derived from Scheinberg’s Theorem (on uniform
approximation).
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Counterexample to Szegö’s condition on the unit circle

Let Q(w) be a polynomial of degree at least three, with simple
roots. The hyperelliptic curve

X = {(z ,w) ∈ C2; z2 = Q(w)}

has a single point at infinity, and it is not rational.

Assume X has genus 1. Let Γ ⊂ X be a smooth, simple, closed
curve, non homotopically trivial on X̂ . Let µ be any positive
measure supported on Γ.

Then P2(µ) = L2(µ), and indeed µ does not admit ABPE.
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genus two
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