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Complex orthogonal polynomials

1 > 0 positive Borel measure, rapidly decreasing on C, of infinite support,
so that the orthogonal polynomials P,(z), n > 0, are well defined by

Pn(z) = vnz" + O(Zn_l)’ Yn >0,

and
(Pn, Pr)2,u = 6nk-

Real moment data (observables) and complex orthogonal
polynomials are interchangeable via elementary matrix operations.



Christoffel-Darboux kernel

N-1
Kn(z,w) = Y P(2)Pi(w),
k=0

is the reproducing kernel in the space Cy[z] of polynomials of degree less
than N:

(h, Kn(-, w))2, = h(w), degh < N.

E. B. Christoffel, Uber die Gaussische Quadratur und eine
Verallgemeinerung derselben, J. Reine Angew. Math. 55 (1858), 61-82.

G. Darboux, Mémoire sur I'approximation des fonctions de trés-grands

nombres, et sur une classe étendue de developpements en série, Liouville J.
(3) 4 (1878), 5-56; 377-416.



Christoffel function

[h(w) < Al Kn(, w)l

with optimal solution Ky(-, w):

LR
max ||h|| _HKN(’ )Ha

or equivalently

A, 1

/\N(N: W) ‘= min |h(W)‘2 - KN(W> W)

where deg h < N and h(w) # 0.

The asymptotics of Christoffel’s function Ay(u, w) were and remain
central for many problems of mathematical analysis.



Moment indeterminateness (see Seminar 2 at IISC)

Note that the orthogonal polynomials P,(z) depend only on the moments
of the underlying measure p:

Cin = / zk?”du(z), k,n>0.
C

Solving the moment problem (i.e. recovery of x from (ckn)7",—o)
encounters a natural and difficult obstacle: is the measure p unique?

M. Riesz (1923), R. Nevanlinna (1924): If suppu C R, then the moments
determine the measure if and only if

lim An(u,z) =0,

N—oo

for at least one z € C\ R (and hence for all).



Maximal point masses

Note that always Any1(p, z) < An(p, 2), so
AN, z) = lim An(p, 2)
N—o0
exists.

In case x € R,
H({x) < Alpeox) = min [ (y)Pdu(y). ) =1

and the upper bound is attained (by extremal solutions of the moment
problem).



The unit circle
w(t) > 0 integrable weight on [—m, 7). With geometric mean
G(w) = exp(—— /7r In w(t)dt)
=ewly | :
if w satisfies Szegd's condition
/ Inw(t)dt > —o0,

—T

and G(w) = 0 otherwise.
Szegd (1914) A(w(t)dt,0) = G(w).

Formulated equivalently as an extremum problem, with z = e't:
s

1
lim min — 12"+ Arz" b4 APw(t)dt = G(w).

n—o00 Aj ™) _x



Density of complex polynomials in Lebesgue space

i > 0 positive Boreal measure on [—7, ) with Lebesgue decompsoition
p=w(t)dt + pisc + pig-
where w(t) has bounded variation.

Kolmogorov (1941), Krein (1945) The system 1,z, 22, ... is dense in
LP(w), p > 1, if and only if

/ﬂ [ In w(£)|dt = oo.

™

Hint: By Szegd's Theorem, if G(w) > 0, then e~ cannot be
approximated by 1,e't, et ...



Accelerated convergence of Fourier series

Let i > 0 be a positive measure supported on a compact set / C R. For a
continuous function f € C(/) we set

N—-1
SN(Oz, f,X) = (f, Pk>Pk(X).
k=0
Then
sup |Sn(a, f,X)|2 < ||fH%7aKN(Oé;X,X) < a(l)Kn(a; x, x).
1lloo,i<1

Consequently
[£(x) = Sn(a, £, x)[ = [F(x) = Q(x) = Sw(a, F — @, x)| <
degigf<N |f — Qlloo,k (1 + a(l)v/Kn(a: x,x)).

Lebesgue (1905) was the first to use this scheme for studying the
convergence of Fourier type developments.
]



The unit disk

pu=dAonD={zeC: |z| <1}

1

Kn(z,w) = K(z,w) = m,

z,w D,

the Bergman kernel, and

N+1 1
T |z]2-1

Kn(z,2) = 1z?NT2(1 + O(1/N)), |z| > 1.

measures how fast a polynomial of degree less than N lifts outside the
disk, keeping its square norm average on D bounded.

Classical asymptotics extended to more general domains by Carleman
(1922) and Suetin (1969).



1. Shape reconstruction in 2D

G = UG; an archipelago, i.e. a finite union of simply connected domains,
with real analytic boundary I' = 9G and p = ygdArea.

"Observables” are finitely many moments
amn = /zmz" du(z)
such as derived from geometric tomography.

They determine the complex orthogonal polynomials P,(z), 0 < n < N,
and the CD-kernel




Christoffel function as defining function of the archipelago

Normalized Christoffel function

Yn(2) = [Kn(z,2)] /2

satisfies:
Vmdist(z, ) < y,(z) < Cdist(z,T)

for z € G, close to I'. Moreover:

Outside G this function decreases exponentially to zero. On analytic
boundaries one has sharp estimates.



Reconstruction experiments
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2. Spectral analysis of dynamical systems

Nonlinear dynamics Linear operator
Xkr1 = T (Xk) Uf =foT
T: X=X U:H—H

Measure-preserving invertible setting: H = L,(v) = U unitary = o(U) C T

Goal: Understand spectrum of U from data

Spectral theorem
1. U= [, zdE(z2)

2. wr(+) = (EC)F, )1, is apositive measure on T

Fact: If span{f, Uf, U~1f, U?f, U=2f,...} = H, then us determines U




Reconstructing ws from moments

v — Mat +  Uac +  lsc
Point spectrum AC spectrum SC spectrum
(Eigenvalues) diae = p(6)d0

Point spectrum

: 1 _ 1276
/\/llnoo K (@770 o778y — wat ({71} forall 8 € [0, 1]

AC spectrum [Mate, Nevai, Totik, 91°]
N

Jim- Koo (270 o270y = p(0) for almost all 8 € [0, 1]



Reconstructing ur from moments - Example

U = 4/[0_3'0'7] do + 01(60 + 60.2 + 50.6 + 60.8)

Point spectrum, N = 100

— 1/Ky
-« Atoms

|




Reconstructing ur from moments - Example

U = 4/[0_3'0'7] do + 01(60 + 60.2 + 50.6 + 60.8)

Point spectrum, N = 1000

— 1/Ky
-« Atoms




Reconstructing ur from moments - Example

U = 4/[0_3'0'7] do + 01(60 + 60.2 + 50.6 + 60.8)

AC part, N = 100

—N/Ky
- - Density
Atom locations




Reconstructing ur from moments - Example

U = 4/[0_3'0'7] do + 01(60 + 60.2 + 50.6 + 60.8)

AC part, N = 1000

—N/Ky
- - Density
Atom locations
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Reconstructing ur from moments - Example

U = 4/[0_3,0_7] dB + 0.1(0g + dgo + 0o + d0.8) + Cantor

Adding SC spectrum, N = 100

—N/Ky
- - Density

Atom locations
===Support of e

|
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Reconstructing ur from moments - Example

U = 4/[0_3,0_7] dB + 0.1(0g + dgo + 0o + d0.8) + Cantor

Adding SC spectrum, N = 1000

—N/Ky
- - Density
Atom locations
—=Support of pi.

[l 1L . R
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Detecting SC spectrum

Fr-(t) = ([0, 1])

K ‘ N
5 . Fi () :/o K (ef2m8  ei2md) av
Fy () = py ([0, t])
Converges to F = ([0, t]) only if u is AC
Converge to F = u(][0, t])

. o Otherwise underestimates F
(at points of continuity)



Detecting SC spectrum

Fr-(t) = ([0, 1])

FO(t) = u([o, 1)

Converge to F = u(][0, t])

(at points of continuity)

Fr(t) =/t N d6

0 K( ei27r9 , ei27r9)

Converges to F = ([0, t]) only if u is AC
Otherwise underestimates F

17



Detecting SC spectrum - CDFs

U = 4/[0_3,0_7] df + 0.1(dp + do.2 + do.6 + d0.5) + Cantor

N = 1000

18



Detecting SC spectrum

Fr-(t) = ([0, 1])

‘ N
Fu (1) :/o K (ei2m8 gi2m6) av
FR(6) = uqa([0. 1])

Converges to F = ([0, t]) only if u is AC
Converge to F = u(][0, t])

. o Otherwise underestimates F
(at points of continuity)

Singularity indicator

Fyo(t+06) — FyP(t—=0)

1
FelE=-d) = Byt —0)

An(t) =




Detecting SC spectrum — Singularity indicator

U = 4/[0_3,0_7] dB + 0.1(0g + dgo + 0o + d0.8) + Cantor

N = 1000

—An(t)
r==—=Support of g
Atom locations

20



Cat map

xi = 2x1+x mod1 :
T = x1+x mod 1 N'=100, M =10

Spectrum known analytically [Govindarajan et al., 2017]

. 1 . 1 .
2m(2
fl — ei27r(2X1+X2) + }ei2ﬂ(5X1+3X2) f2 = e m(2xtx2) + 56127r(5x1+3X2) + ZGIQW(13X1+8X2)

2 21

1
5 — -
o =~ + cos(276) PR = 1g + (5/4) cos(2m6) + 5 cos(4m0)



Cat map

xi = 2x1+x mod1 :
X7 = x31+x  modl N =100, M = 10

Spectrum known analytically [Govindarajan et al., 2017]

. 1 . 1 .
2m(2
fl — ei27r(2X1+X2) + }ei27r(5X1+3X2) f2 = e m(2xtx2) + 56127r(5><1+3>(2) + ZGIQW(13X1+8X2)

2 21

1
5 — -
o =~ + cos(276) PR = 1g + (5/4) cos(2m6) + 5 cos(4m0)

- -pfl(e) = ~Pf (0)
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Cat map

xi = 2x1+x mod1 :
X = X1+ X mod 1 N =100, M =10

Distribution functions Singularity indicator

0.5

0.45+

0.4+

0.35F

0.3F

0.25r

0.2

—F | 0.15}
- F9 0.1}

0.05r




Lorenz system

Observable x;

Observable x»

Observable x3

=]

- FI(\?
1= FCS
_ Rk

-
-
————
-
-

—Ay

[ o e

_____

e e e

—— e —— - =
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Lorenz system

Observable x;

Observable x»

Observable x3

=]

- FI(\?
1= FCS
_ Rk

-
-
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-
-

—Ay

[ o e

_____

e e e
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Lorenz system

1/Ky — atomic part

—N =100

—N = 1000]
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Lorenz system

1/Ky — atomic part

—N =100 ||

—N =100

—N = 1000]
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Lorenz system

Singularity indicator

—N =100

—N = 1000

28



Cavity flow

2-D lid-driven cavity flow
Observable: point measurement of stream function

Re = 13k

1/Kn 1/Kp (logscale)

— N =100 | N =100 |
— N = 1000]] N = 1000/

R
Lol AWMWUMA

[Data courtesy of H. Arbabi]



Cavity flow

2-D lid-driven cavity flow

Observable: point measurement of stream function

1/Kn

Re = 16k
1/Ky (logscale)

—N =100 | —N =100

w

[Data courtesy of H. Arbabi]

—N = 1000|| I A —N = 1000}

f“
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Cavity flow

2-D lid-driven cavity flow
Observable: point measurement of stream function

Re = 19k

1/Kn 1/Kp (logscale)

—N =100 —N =100
—N = 1000 | —N = 1000}

_ ‘ ‘ ‘ T “HUJ\ IR m..ih

[Data courtesy of H. Arbabi]



Cavity flow

2-D lid-driven cavity flow

Observable: point measurement of stream function

1/Kn

—N = 100

—N = 1000||

Re = 30k
1/Ky (logscale)

—N = 100

—N = 1000

[Data courtesy of H. Arbabi]
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Cavity flow — distribution functions

Re = 30k

‘—_———————————

33



Example — Cat map

7 = 2x+x modl . | 5
f = x+x modl Data: Single trajectory of length 10

Approximation of P, with A =[1/8,3/8] and N = 100

Real part Imaginary part

cf. [Govindarajan et al., 2017]



Detecting SC spectrum - CDFs

U = 4/[0_3,0_7] df + 0.1(dp + do.2 + do.6 + d0.5) + Cantor

N = 100

35



Detecting SC spectrum - CDFs

U = 4/[0_3,0_7] df + 0.1(dp + do.2 + do.6 + d0.5) + Cantor

N = 1000
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Detecting SC spectrum — Singularity indicator

U = 4/[0_3,0_7] dB + 0.1(0g + dgo + 0o + d0.8) + Cantor

N = 100

—An(t)
r[==Support of g
Atom locations

a
5
.
3




3. Detection of outliers in statistical data

rsquare, 300 pts, 1 out rsquare, 300 pts, 1 out rsquare, 300 pts, 1 out
1.5 1.5 1.5
1
0.5
o
-0.5 -0.5 -0.5
-1 0 1 2 -1 0 1 2 -1 o] 1 2
Degree 3 (10), Ortho 1e-014 Degree 5 (21), Ortho 7e-014 Degree 8 (45), Ortho 4e-013
rsquare, 300 pts, 1 out rsquare, 300 pts, 1 out rsquare, 300 pts, 1 out
1.5 1.5 1.5
1
0.5
0
-0.5 -0.5 -0.5
-1 [o} 1 2 -1 [o} 1 2 -1 o] 1 2
Degree 9 (10), Ortho 1e-014 Degree 20 (21), Ortho 2e-013 Degree 44 (45), Ortho 2e-010

1 outlier, N = 300 shape of square



rsphere, 600 pts, 3 out rsphere, 600 pts, 3 out rsphere, 600 pts, 3 out

1.5 1.5
1 1
0.5 0.5
2 3
o 2 © 3
-0.5 3 -0.5 S
-1 -1
-1.5 -1.5
-2 2 -2 0 2
Degree 3 (10), Ortho 7e-015 Degree 5 (21), Ortho 2e-014 Degree 8 (45), Ortho 6e-014
rsphere, 600 pts, 3 out rsphere, 600 pts, 3 out rsphere, 600 pts, 3 out
1.5 1.5 1.5
1 1 1
0.5 0.5 0.5
1 2 4
0 2 0 = © 5
-0.5 42 -0.5 S -0.5 °o
-1 -1 -1
-1.5 -1.5 -1.5
-2 o 2 -2 [o} 2 -2 o] 2
Degree 9 (10), Ortho 2e-015 Degree 20 (21), Ortho 2e-015 Degree 44 (45), Ortho 4e-015

3 outliers, N = 300 disk cloud, "real” level lines do not separate well,
"complex” do



rsphere, 600 pts, 7 out rsphere, 600 pts, 7 out rsphere, 600 pts, 7 out
1

1.5 5 1.5
1 1 1
0.5 0.5 0.5
1 e+0Q2 2
o 1 o erodz O 3
-0.5 091 o5 s+003 45 4
-1 -1 -1
-1.5 -1.5 -1.5
-2 o] 2 -2 o] 2 -2 0 2
Degree 3 (10), Ortho 3e-015 Degree 5 (21), Ortho 1e-014 Degree 8 (45), Ortho 5e-014
rsphere, 600 pts, 7 out rsphere, 600 pts, 7 out rsphere, 600 pts, 7 out
1.5 1.5 1.5
1 1 1
0.5 0.5 0.5
1 2 4
0 2 0 = © 5
-0.5 42 -0.5 S -0.5 °
-1 -1 -1
-1.5 -1.5 -1.5
-2 o 2 -2 [o} 2 -2 o] 2
Degree 9 (10), Ortho 2e-015 Degree 20 (21), Ortho 2e-015 Degree 44 (45), Ortho 4e-015

7 outliers, N = 300 disk cloud, "real” level lines do not separate well,
"complex” do



2

] rsphere, 600 pts, 7 out

: rsphere, 600 pts, 7 out

2 -1 0 1

Degree 1 (3), Ortho 2e-16

; rsphere, 600 pts, 7 out

Degree 4 (15), Ortho 3e-15
rsphere, 600 pts, 7 out

rsphere, 600 pts, 7 out

Degree 1 (2), Ortho 2e-16

Degree 9 (10), Ortho 6e-16

7 outliers, N = 600 disk cloud.

Degree 44 (45), Ortho 9e-16




rsquare 900 pts, 15 out
1 con

0.5 0 0.5 1
Degree 1 (3), Ortho 7e-16

rsquare 900 pts 15 out
1 oo

0.5

0
0.5 0

05 1
Degree 1 (2), Ortho 7e-16

rsquare, 900 pts, 15 out
1 N

0.5 0 05 1
Degree 4 (15), Ortho 5e-15
rsquare, 900 pts, 15 out
1 oy Setod

0.5

0 L
0.5 0

05 1
Degree 9 (10), Ortho 2e-15

15 outliers, N = 900 square cloud.

] rsquare, 900 pts, 15 out

05} °

[J ..
e
0 x +
05 0 05 1

Degree 8 (45), Ortho 5e-14
rsquare, 900 pts, 15 out
1 LEES ol tetad

Degree 44 (45), Ortho 5e-14




Perturbation of CD kernels

N s
1 1
UN = TN + ON, TNZNZfsz,%T, UNZNZ5z,-

j=s+1 j=1

From discrete 7 to continuous :
KiN(z,2) = K;1T7N(z, 2)?

Level lines of K (z, z) approach supp(7) ?

Bounds for K)™(z, z)

m upper bounds on supp(t + on) ?
m lower bounds outside supp(7 + on) ?



Comparison of measures and kernel (1)

Set P, = span{pf, ..., pp} (independent of ...), then for all
zeC,n>0

1 - L — i ”pHZ,,u 2
Kt (z,z) Z ij (2)F —png;gn( \p(z)|) ’

Lem 1: if u < wvthenforall z

Ki(2,2) > K3(2,2).




Comparison of measures and kernel (2)
Set P, = span{p}, ...,ps} (independent of 1...), then for all z € C,

n>0
& e (Pl
Kiz.z) | ,._Zo'pf @F = min (o217

Consider (modified) Grammian

- (JBlaay? _ M0

Mn(v, ) = <<P, Pl)v, ) 1|2, £¢

Lem 2: if spec(Mn(v, 1)) C [, 3] then

JKi(2.2) < Ki(2.2) < K3 (2.2).




From discrete 7 to continuous 7

N s
1 1
UN = TN + ON, TN:N25Z/%T, UN:NZ(SZ/.
) =

Cor 1: Suppose (H) : spec(Mn(7n, 7)) C [, 3]. Then for all z

KiM(z.2) < Ki(2,2) < SK3¥(2.2).

SKiM(2,2) < KP4z, 2) < SKEN(z. 2)




From discrete 7 to continuous 7

N s
1 1
UN = TN + ON, TN:N25Z/%T, UN:NZ(SZ/.
) =

Cor 1: Suppose (H) : spec(Mn(7n, 7)) C [, 3]. Then for all z

KiM(z.2) < Ki(2,2) < SK3¥(2.2).

SKiM(2,2) < KP4z, 2) < SKEN(z. 2)

Recall, e.g., from [A. Chkifa, A. Cohen, G. Migliorati, F. Nobile, and R.
Tempone’2015]: for s = 0, if z4, ..., zy are samplings of i.i.d.
random variables with law given by measure 7 then

log(§) N )

i >1— 1 - .
Prob( (H) is true) >1-2(n+ )exp( 2 maxsesm( Ki(2,2)



Level lines of K7 (z, z) approach supp(7) ?

Thm 1: [Lasserre & Pauwels 2017]: if 7 is area measure on some compact

S ¢ RY with S =Clos(Int(S)) then there exist explicit v, € R such that the
Hausdorff distance between S = supp(7) and

Sn=A{z:K;(2,2) <}

tends to zero for n — oo.
Two ingredients of proof (works also for C%):

m upper bounds for K7 (z, z) for z in compact subsets of Int(S)
m through Lem 1 via area measures on small balls

m classical for S € R, C, recent progress [Totik'2010] in case of
C? boundary

m recent progress [Krod, Lubinsky 2013] in C¢, RY

m lower bounds for K (z, z) for z in compact subsets of C\ S

m through peak polynomials following [Krod, Lubinsky 2013]
m logarithmic potential theory (Siziak function) in C,
pluripotential theory in C¢, RY.

But'so far no outliers:!




Lower bounds for K)"(z, z) outside supp(7 + on)

Lem 3: Under hypothesis (H) for z & supp(7 + o) :

3KiN(z,2) _ Ki"M(z,2)
2 Ki(z,z) = Kj(z,2)

> det(CrTw(ijzk)>j7k70 S/th(C;(Zj,Zk)>j7k

My

Ky (z,w)

with zy = z, and C}(z, w) = NCAEEL AT

Idea of proof: Writing vn(z) = (pg(z), p;(z)),

Ky TN(z,2) = Vo(2)Mp(T 4 on, 7) " va(2)*,

1
Mn(r +on,7) = 1+ 3 VaVi, Vo= (v,,(z1 ), vn(zs)).




Main Theorem for one complex variable [Bs, P, ES, Ns'19]

Consider T area measure on compact simply connected set
S = supp(7) C C, and let n, N — oo such that (H) holds, and

maxK (z,z) x Nx r}nn exp(2ngs(zj, 00)).

.....

Then uniformly for z € S  supp(7n) we have
1

K@) = o(),
uniformly on compact subsets of C \ supp(7 + on)

s

2 exp(2ngs(z.50)) [ [ exp(~20s(z, 2))(1 + 0(1)),

1 KN
*Kn (sz) 3N e

N
and for zx € supp(on)

] N
1 - 7KILN <
N f2 (Zk,zk) = KMN—5Zk/N(Zk,Zk)

< %exp(—2ngs(z,oo)) H exp(29s(2j, zx))(1 + o(1)).
J=1.#K



One complex versus 2 real variables

Totﬁlsdegree 13inIR%: exp(max(g(x1),g(x2))) to the power 26 Pfglial degree 9in R%: exp(g(x1)+g(x2)) to the power 18 15 Degree 100 in C: exp(g(z)) to the power 200

1 1 T 1"
05 05 05t
{
s |
® 0 0 H
= \ |
|
05 05 st ]
RS N
——1.00116e+00 —— 1.00081e+00 —— 1000006400
—— 102006205 —— 293431403 —— 1574916405
4 1.06538e407 —————————— g 7.33163¢+04 - At 2279746410
Ry — 8189626405 / 280538e+15
6.16641e+09 599307406 2745306420
15 5 5
45 4 05 0 05 1 15 45 4 05 0 05 1 15 45 4 05 0 05 1
x1 x1 Re(z)
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Supports on algebraic varieties

Detecting a circle:
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2D torus

Figure: Dragon fly orientation with respect to the sun, on the torus. The curves
represent the empirical Christoffel function for different values of the degree.



2D sphere

lat
-05 00 05 10 15

-1.0

-15

Figure: Each point represent the observation of a double star in the sky. They live
on the sphere and are associated to their longitude and latitude. The level sets
are those of the empirical Christoffel functions evaluated on the sphere in R3.
The degree is 8. The band which is highlighted by the level sets corresponds to
the Milky Way.



2D torus lying on 3D sphere

Figure: Each point two dihedral angles for a Glycine amino acid. These angles are
used to describe the global three dimensional shape of a protein. They live on the
bitorus. The level sets are those of the empirical Christoffel functions evaluated
on the sphere in R*. The degree is 4.
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3. Approximation in the mean by complex polynomials

Let i be a positive, compactly supported measure on C. We
denote by P?(u) the closure of complex polynomials in L?(y), and
R2(F, i) the closure in L?(y) of rational functions with poles
disjoint of F.

In general, the spectral analysis of the multiplier
S, = M, : P?(u) — P?(p) reveals (constructively) the nature of

the measure p. Beyond the spectral theorem for normal operators.

Problem. When is P?(p) = L2(u), or R2(F, ) = L2(u)?
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Thomson's Theorem, 1991

Let i be a positive Borel measure, compactly supported on C.
There exists a Borel partition Ag, A1, ... of the closed support of
u with the following properties:

1) P(p) = L*(po) ® P?(p11) © P?(p2) @ . .., where

Hj = :U"Ay ./2 0;

2) Every operator Sﬂj = M,, j > 1, is irreducible with spectral
picture:

o(Su) \ oess(Sy;) = Gy, simply connected,

and
supp pj C Gj, Jj = 1;

3) If io = 0, then any element f € P?(p1) which vanishes [u]-a.e.
on G = U;G; is identically zero.
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Analytic bounded point evaluations

Let © be a positive Borel measure, compactly supported on C.
Then
P2(p) # L*(n)

if and only if there exists an open set U of analytic bounded point
evaluations

[f(a)l < Clfllou, feClz], acU,

where C does not depend on a.
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Brennan's Theorem, 2008

Let p be a positive measure without point masses, compactly
supported on C. Assume the set F contains the closed support of
the measure p, and the complement C \ F does not have
components of arbitrarily small diameter.

Then R%(F, i) # L?(u) if and only if R?(F, i) admits analytic
bounded point evaluations:

If(a)| < Cl|fll2,n, f € R%(F,p), a€ U (open set).

Novel technical ingredient and simplification: X. Tolsa
semi-additivity of analytic capacity.
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Classification of irreducible subnormal operators...

is a matter of complex hermitian geometry: the kernel of the linear
pencil
z +— ker(S* — 2)

is, on the cloud of analytic bounded point evaluations, a hermitian
line bundle. Curvature type invariants determine the unitary orbit
of the generating operator S.
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Density of complex polynomials on the unit circle

Theorem (Kolmogorov, 1941, Krein, 1945) For a positive
measure i supported on T, one has P?(u) = L?(u) if and only if

™
/ |log 1t/ |dt = .

—T

Or equivalently, the multiplier M, is a normal operator. In the
opposite case, (Szegé's limit theorem gives even more),

dimker(M, —w)* =1, |w| <1,

and hence the Fredholm index of M, is —1 at every point of the
unit disk.
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Carry the analysis on affine, algebraic curves

Theorem (S. Biswas-M.P., 2022) Let X be a rational curve in
C" and let u be a positive Borel measure without point masses,
supported by a compact subset of X. Then P?(u) # L?(u) if and
only if there are analytic P?(u)-bounded point evaluations.
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|dea of proof

Let R=(r,r,...,rn) be an n-tuple of rational functions which
properly parametrizes the rational affine curve X C C". That is,
denoting by S C C the poles of R, the holomorphic map

R:C\S— X

is one to one, except finitely many points, and it covers X except
finitely many points.

Let p denote a sufficiently large radius, so that the support of the
measure (i is contained in the ball B(0, p). The pull-back

U=R"B(0,p)

is an open subset of C, of finite connectivity, with piece-wise
smooth boundary. In particular we can assume that every
connected component of the complement of U has positive
diameter.
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The restricted analytic map
R:U— B(0,p)

has finite fibres, hence it is proper. Grauert's finiteness theorem
implies that the direct image sheaf ROy is coherent and

R.Ou(B(0, p)) = O(V).

The coherence of R.Oy and the injectivity of R modulo a finite
set imply that

dim O(U)/R*O(B(0, p)) < oc.

One can define a pull-back measure v on U

/cbdu:/qﬁoRdV,

for every continuous function ¢ : B(0, p) — C.
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Let R?(U,v) denote the closure in L2(v), of rational functions
with poles on the complement of U. Runge's approximation
theorem implies that R?(U, v) is also the closure of the algebra
O(U) in L2(v). Hence

There exist analytic bounded point evaluations with respect to
P2(p) if and only if there exists analytic bounded point evaluations
with respect to R*(U,v).

Brennan's Theorem completes the proof.
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Invariant subspaces for subnormal tuples

A commuting subnormal tuple with Taylor’s joint spectrum
contained in a rational curve admits joint invariant subspaces.

As a matter of fact, a continuum of invariant subspace of
codimension one exists, parametrized by a relatively open subset of
the joint spectrum.
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Newton's Trident: xy = x3 + 1
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Maclaurin trisectrix: x(x? + y?) = a(3x% — y?),

_ 3=t — ¢
X =aip, y= tx.
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The general case

Resolution of singularities and our base change technique lead to
the following Open Question:

Let X be an open Riemann surface of finite genus, and let 1 be a
positive Borel measure on X without point masses. Let U C X be
an open, relatively compact subset of X, with finitely many
components of X \ U, none reduced to a point. Assume the closed
support of the measure 11 is contained in U. Then analytic
functions O(U) are dense in L?(p) if and only if there are no
corresponding bounded analytic point evaluations.
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Uniform approximation on Riemann surfaces

Let X be an open Riemann surface. Assume that the measure p is
supported by a piecewise smooth curve I' C X with the property
that the complement X \ I is connected. Then P?(u) = L?(u).

Proof derived from Scheinberg’s Theorem (on uniform
approximation).
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Counterexample to Szego's condition on the unit circle

Let Q(w) be a polynomial of degree at least three, with simple
roots. The hyperelliptic curve

X ={(z,w) € C% 22 = Q(w)}
has a single point at infinity, and it is not rational.

Assume X has genus 1. Let [ C X be a smooth, simple, closed
curve, non homotopically trivial on X. Let p be any positive
measure supported on I'.

Then P?(p) = L?(), and indeed j does not admit ABPE.
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genus two

o
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