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First there were numbers

Moment indeterminateness



Let x0 > x1 > 0 be integers. Euclid division:

x0 = b0x1 + x2

x1 = b1x2 + x3

...

xn−1 = bn−1xn

with G.C.D. xn = (x0, x1).
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Divide and repeat

xk−1

xk
= bk−1 +

1

xk/xk+1
:

x0/x1 = b0 +
1

b1 + 1
b2+...+ 1

bn−1

=

b0 + Kn−1
k=1(

1

bk
).
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Irrationality criteria: the continued fraction does not stop

Hipassus of Metapontum (500 BC): The diagonal x0 of the square
of side x1 satisfies (via an ingenious geometric recurrence)

x0/x1 = 1 +
1

2 + 1
2+ 1

2+...

.

More general (Bombelli method, approx. 1560) for N positive
integer, not a perfect square:

N = a2 + r ,
√

a2 + r = a + x

yields:

x =
r

2a + x
,

hence √
N = a +

r

2a + r
2a+ r

2a+...

.
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The real numbers

For sequences of non-negative integers b = (bn)Jn=0, with J finite
or not, consider Z the union of domains

D(b) = Z+, bn > 0, n > 0,

or

D(b) = [0, J] ∩ Z+, J > 0, (bn > 0, n > 0), bJ ≥ 2,

or
D(b) = {0}.

Theorem. The mapping

Z −→ R, b 7→ b0 + KJ
k=1(

1

bk
)

is bijective, and a homeomorphism from Z endowed with pointwise
convergence.
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Algebra of continued fractions

Recurrence, with aj 6= 0:

x0 = b0x1 + a1x2

x1 = b1x2 + a2x3

...

xn−1 = bn−1xn + anxn+1

...

has partial fractions (no cancellation):

Pn

Qn
= b0 + Kn

k=1(
ak
bk

).
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Main Theorem: Wallis 1656, Brouncker 1655, Euler 1748

The formal continued fraction, with initial data:

P−1 = 1, P0 = 0, Q−1 = 0, Q0 = 1

implies
Pn = bnPn−1 + anPn−2,

Qn = bnQn−1 + anQn−2,

PnQn−1 − Pn−1Qn = (−1)n−1a1a2 . . . an,
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ξ = b0 +
a1

b1 + a2

b2+
. . .+ an

bn+
an+1
ξn+1

yields

ξ =
ξn+1Pn + an−1Pn−1

ξn+1Qn + an−1Qn−1
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Enters Positivity

Assume all aj , bj > 0. Then

Pn

Qn
− Pn−1

Qn−1
= (−1)n−1 a1a2 . . . an

QnQn−1

therefore
P0

Q0
< . . .

P2k

Q2k
<

P2k+1

Q2k+1
< . . . <

P1

Q1
.
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Analytic Theory
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Markov’s Paradox

Solve
z2 − 2z − 1 = 0

Equivalently

z = 2 +
1

z
.

The solution should be

ξ = 2 +
1

2 + 1
2+ 1

2+...

,

that is ξ = 1 +
√

2, because all entries are positive.
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Where is the other root 1−
√

2?

The approximants

2 +
1

2 + 1
2+ 1

2+...+ 1
2+1−

√
2

do not converge.
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Koch divergence test

Assume bn ∈ C and
∑

n |bn| <∞. Then the approximants of
K∞1 ( 1

bn
) satisfy:

lim
n

P2n = P, lim
n

P2n+1 = P ′,

lim
n

Q2n = Q, lim
n

Q2n+1 = Q ′,

and
P ′Q − PQ ′ = 1.

Hence clear divergence.
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Seidel convergence test

Assume all bj > 0. Then

K∞1 (
1

bn
)

converges if and only if ∑
n

bn =∞.
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The eternal quest: π

From Wallis:
2

π
=
∞∏
j=1

(2j − 1)(2j + 1)

(2j)2
.

and Brouncker:
4

π
= 1 + K∞1 (

(2n − 1)2

2
).

straight to the origins of the analytic theory of continued fractions.

Moment indeterminateness



Main idea, derived from Wallis infinite product. Consider a
function b(s) > s subject to:

b(s)b(s + 2) = (s + 1)2.

And note:

b(1) =
22

b(3)
=

22

42
b(5) =

22

42

62

b(7)
= . . . =

22

42

62

82

102

122
. . .

(4n − 2)2

(4n)2
b(4n+1) =

12

22

32

42

52

62
. . .

(2n − 1)2

(2n)2
b(4n+1) =

1× 3

22

3× 5

42
. . .

(2n − 1)(2n + 1)

(2n)2

b(4n + 1)

2n + 1
.

That is

b(1) = (
2

π
+ o(1))

b(4n + 1)

2n + 1
.
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But s + 2 < b(s + 2) and the functional equation yields:

s < b(s) <
s2 + 2s + 1

s + 2
= s +

1

s + 2
.

Hence b(1) = 2
π .

For the continued fraction we start with the formal series:

b(s) = s + c0 +
c1

s
+

c2

s2
+ . . .

and find the coefficients by applying Euclid division algorithm to
series in 1/s. Conclusion

b(s) = s +
12

2s + 32

2s+ 52

2s+...

.

With convergence derived from the functional equations and
elementary inequalities.
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Closed form

b(s) = 4[
Γ(3 + s/4)

Γ(1 + s/4)
]2.

due to Ramanujan.
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The new “continuum”

Laurent series
f (z) =

∑
k∈Z

ck
zk
,

with finitely many k < 0 terms. Define

[f ] =
∑
k≤0

ck
zk
, Frac(f ) = f − [f ].

And non-archimedean norm

‖f ‖ = exp deg f , deg(0) = −∞.
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The algorithm

Initial f0 = f produces a P-fraction:

f = [f0] +
1

1/Frac[f0]
= [f0] +

1

[f1] + 1
[f2]+...

For non-rational f (z) one finds degQn →∞ and

‖f − Pn

Qn
‖ = exp(− degQn − degQn+1).

Theorem. (Markov, Chebyshev, Gauss) An irreducible rational
fraction P/Q is a convergent for the Laurent series f if and only if

deg(f − P/Q) ≤ −2 degQ − 1.
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Padé approximation

Specializes to Padé approximation problem: given f and n > 0 find
all polynomials P,Q, Q 6= 0, degQ ≤ n such that

deg(Qf − P) ≤ 2n − 1.

A normal index is degQ for an approximant P/Q.
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Constructive aspects

Starting with f (z) = [f ](z) +
∑

k≥1
ck
zk

one defines:

Hn(f ) =


c1 c2 . . . cn
c2 c3 . . . cn+1
...

. . .

cn cn+1 . . . c2n−1

 ,

and

Jn(z) = det


c1 c2 . . . cn+1

c2 c3 . . . cn+2
...

. . .

cn cn+1 . . . c2n

1 z . . . zn

 .
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Main Theorem.

C. G. J. Jacobi (approx. 1850): An integer n > 0 is a normal index
for f if and only of detHn(f ) 6= 0. In that case the convergent
P/Q with degQ = n is, with a constant γ:

Qn(z) = γJn(z)

Pn(z) = [Jn(z)f (z)].

And f (z) is rational if and only if there exists N with
detHn(f ) = 0, n ≥ N. (Kronecker)
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Abelian integrals

Let R ∈ C[z ] of degree degR = 2g + 2 ≥ 2 without multiple roots.
Pell’s type equation:

P2 − Q2R = 1

has polynomial solutions, Q 6= 0 if and only if
√

R(z) admits a
periodic polynomial continued fraction expansion, if and only if
there exists r ∈ C[z ], deg r = g , so that∫

r√
R
dz

can be expressed in elementary functions. (Abel 1826).
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Stieltjes
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Stieltjes has accumulated examples and computations concerning
semi-convergent series (“the curse of divergent series” according to
Abel), leading to a rigorous study of functions of s of the form:

b0s + c0 + K∞k=1(
an

bns + cn
),

where
an > 0, bn ≥ 0,<cn ≥ 0.

Main observation, for s > 0:

w 7→ an
bns + cn + w

preserves <w > 0.
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Complex Markov Convergence Test

If
b0s + c0 + K∞k=1(

an
bns + cn

),

converges to finite values on a subset of (0,∞) with an
accumulation point, then it converges to an analytic function
defined on <w > 0.

Major advance, a la normal family argument, discovered by
Stieltjes many years before Vitali. See his letters to Hermite.
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Stieltjes Memoir-1894

S(z) =
1

a1z + 1
a2+ 1

a3z+ 1
a4+...

,

with all parameters aj ≥ 0. Produces convergents satisfying

lim
n

P2n(z)

Q2n(z)
= F (z),

lim
n

P2n+1(z)

Q2n+1(z)
= F1(z),

where F ,F1 are analytic functions on C \ (−∞, 0].
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Asymptotic expansion

S(z) ∼ c0

z
− c1

z2
+

c2

z3
− . . . .

That is

lim
s→∞

sn+1[S(s)− c0

s
+

c1

s2
+ . . .+ (−1)n

cn−1

sn
] = (−1)ncn,

for all n ≥ 1.
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Indeterminateness

Assume
∑

n an <∞. Then all limits

limP2n(z) = p(z), limQ2n(z) = q(z),

limP2n+1(z) = p1(z), limQ2n+1(z) = q1(z),

exist in C and
p(z)

q(z)
=
∑
j

Mj

z + mj

with Mj > 0,mj ≥ 0. Similarly for p1(z)
q1(z) , but

p(z)

q(z)
6= p1(z)

q1(z)
.
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Determinateness

Assume
∑

n an =∞. Then the continued fraction converges on
C \ (−∞, 0] to a function of the form

S(z) =

∫ ∞
0

df (u)

u + z
,

where f is monotonically non-decreasing on [0,∞) and all power
moments of df (u) exist. A new notion of integral was developed
by Stieltjes for this purpose. Unifying in particular the two cases∑

j

Mj

z + mj
=

∫ ∞
0

dφ(u)

u + z
.
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Comparison: old continuum versus the new one

ξ =
∞∑
j=0

nj
10j
∈ [0,∞), ξ = b0 + Kj(

1

bj
),

and

σ ∈ Meas+[0,∞),

∫ ∞
0

dσ(u)

u + z
∼ 1

a1z + 1
a2+ 1

a3z+ 1
a4+...

,

In both representations the parameters bj ∈ Z+, respectively
aj ≥ 0 are independent.
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Cauchy transforms

There is a constructive bijective correspondence between analytic
functions F (z) defined in the half-plane =(z) > 0 and satisfying
=F (z) > 0 there, and positive Borel measures σ of finite mass,
defined on R admitting all power moments:

F (z) = az + b +

∫ ∞
−∞

1 + tz

t − z
dσ(t),

where a ≥ 0 and b ∈ R.
Moreover, the measure σ admits all moments, if and only if

sup
y≥1
|yF (iy)| <∞

and there are real numbers sk , k ≥ 0, satisfying

lim
y→∞

(iy)2n+1[F (iy) +
s0

iy
+

s1

(iy)2
+ . . .+

s2n−1

(iy)2n
] = −s2n.
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Recovery: Stieltjes and Perron

If

F (z) =

∫ ∞
−∞

1

t − z
dσ(t), =z > 0,

then

σ{a}+ σ{b}
2

+ σ(a, b) = lim
ε→0

1

π
=
∫ b

a
F (x + iε)dx .
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Stirling formula

Major application of Stieltjes theory:

log Γ(z) = −z + (z − 1/2) log z + log(
√

2π) + J(z),

where

J(z) =
1

π

∫ ∞
0

log
1

1− e−2πu

z

z2 + u2
du.

The formal power series expansion of J diverges:

J(z) ∼
∞∑
k=0

(−1)k
ck

z2k+1
,

but the associated continued fraction converges.

Moment indeterminateness



Note:

ck =

∫ ∞
0

ukdφ(u), k ≥ 0,

where

φ(u) =
1

π

∫ u

0

log(1− e−2π
√
t)

2
√
t

dt.

Moment indeterminateness



Hamburger articles 1919-1921

Real heritor of Stieltjes, author of a detailed study of the moment
problem on the real line. All centered on continued fraction
expansions of the form:

S(z) =
a1

z + b1 + a2

z+b2+
a3

z+b3+...

,

with aj 6= 0 real and bj complex.
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Convergence assured by selection principle of Grommer (à la
normal families argument).

Parametrization of all solutions of the truncated problem.

Identification, and recognition of importance, of Christoffel and
Darboux kernel.

Complemented by R. Nevanlinna function theoretic study (1922) of
Stieltjes moment problem.
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Carleman
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Invaluable references:

Sur les equations integrales singulieres a noyau reel et
symmetrique, Uppsala, 1923.

Lecons sur les fonctions quasi-analytiques, Paris 1926.
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Main Lemma. Let 0 < λ1 < λ2 < λ3 . . .→∞ and
0 < β1 < β2 < β3 < . . . , so that

∞∑
1

λj − λj−1

βj
=∞.

An analytic function f (z) defined for =z > 0 and satisfying:

|f (z)| ≤ |βn
z
|λn , =z > 0, n ≥ 1,

is identically zero.
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Determinateness Criterion

Assume the moment problem∫
R
xndσk(x) = sn, n ≥ 0,

admits two solutions σ1, σ2. The Cauchy transforms are:

Fk(z) =

∫
dσk(x)

x − z
, =z > 0, k = 1, 2.

Fix n > 1 and remark:

|F1(z)− F2(z)| = | 1

z2n+1

∫
x2nd(σ1 − σ2)(x)

1− x
z

|.
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With θ = arg z we find

|F1(z)− F2(z)| ≤ 2c2nc0

|z2n||=z |
.

And on the half-plane =z > 1:

|F1(z)− F2(z)| ≤ 2c2nc0

|z2n|
.

Main Lemma implies: If ∑
n

1

c
1/2n
2n

=∞,

then F1 = F2, hence σ1 = σ2.
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Construction of indeterminate moment sequences

Start with a non-constant φ ∈ C (∞)[0, 1] with
φ(k)(0) = φ(k)(1) = 0, k ≥ 0.

Then

m2
p =

∫ 1

0
[φ(p)(x)]2dx , p ≥ 0

is a Stieltjes moment sequence.
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Indeed:∫ 1

0
φ(2p)(x)φ(2q)(x)dx = (−1)p+q

∫ 1

0
[φ(p+q)(x)]2dx ,

∫ 1

0
φ(2p+1)(x)φ(2q+1)(x)dx = (−1)p+q

∫ 1

0
[φ(p+q+1)(x)]2dx .

Hence ∫ 1

0
|

n∑
k=0

(−1)kck f
(2k)(x)|2dx =

∑
m2

p+qcpcq ≥ 0,

∫ 1

0
|

n∑
k=0

(−1)kck f
(2k+1)(x)|2dx =

∑
m2

p+q+1cpcq ≥ 0.
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Fourier transform:

αn − iβn =

∫ 1

0
φ(t)e iπntdt,

implies

φ(x) = α0 + 2
∞∑
n=0

αn cos(πnx)

and

φ(x) = 2
∞∑
n=1

βn sin(πnx).
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Plancherel theorem yields:

m2
0 = α2

0 +
∞∑
1

α2
n,

m2
p = 2

∞∑
1

(πn)2pα2
n, p > 0,

and also

m2
p = 2

∞∑
1

(πn)2pβ2
n , p ≥ 0.
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Distinct solutions

σ1 = α2
0δ0 +

∞∑
1

2α2
nδπn,

and

σ2 =
∞∑
1

2β2
nδπn.
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Absolutely continuous different solutions

A(s) + iB(s) =

∫ 1

0
e istφ(t)dt =

(−1)p

(is)p

∫ 1

0
e istφ(p)(t)dt,

produces

m2
p =

2

π

∫ ∞
0

s2pA(s)2ds =
2

π

∫ ∞
0

s2pB(s)2ds.
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Quasi-analytic functions

Theorem. (Denjoy) Let ψ ∈ C (∞)[0, 1] with ψ(n)(0) = 0, n ≥ 0,
and

Mn = sup
x∈[0,1]

|ψ(n)(x)|, n ≥ 0.

If ∑
n

1

M
1/n
n

=∞,

then ψ = 0.
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Let φ(t) = ψ(1− 4(t − 1
2 )2) as before, and note

|φ(n)(x)| ≤ KnMn, n ≥ 0,

with K > 0 a constant. Then

m2
n =

∫ 1

0
φ(n)(x)2dx ≤ M2

nK
2n.

Since m
1/n
n = [m2

n]1/(2n), we infer divergence:∑ 1

m
1/n
n

=∞,

that is the associated moment problem admits a unique solution.
This can happen only if φ = 0, that is ψ = 0.
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The dawn of modern spectral analysis

Account by Carleman of Hilbert and his school (Hellinger,
Toeplitz, Grommer):

J(x) =
∞∑
p=1

(apx
2
p − 2bpxpxp+1),

as a specific quadratic form in infinitely many variables. In matrix
notation:

J(x)− λ =


a1 − λ −b1 0 0 . . .
−b1 a2 − λ −b2 0

0 −b2 a3 − λ −b3 . . .
...

. . .
...


is naturally associated, via the recurrence of the partial
convergents, to the continued fraction:
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S(λ) =
1

a1 − λ−
b2

1

a2−λ−
b2

2
a3−λ−...

.

Theorem. Assuming the real entries aj , bj uniformly bounded,
there exists a positive spectral measure ρ with compact support, so
that

S(λ) =

∫ M

m

dρ(t)

t − λ
, λ /∈ [n,M].

Moreover, the power moments (sj) satisfy

S(λ) = −
∞∑
j=0

sj
z j+1

, |z | >> 1.
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Even for unbounded aj , b
′
js one can speak of the rational

convergents Qn(λ)
Pn(λ) of S(λ).

All (possible multiple) solutions ρ to the moment problem match
asymptotically the moments:∫

R

dρ(t)

t − λ
∼ −

∞∑
j=0

sj
z j+1

,

in a wedge 0 < ε < arg z < π − ε.
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Finite term relation for orthogonal polynomials

Given a positive, rapidly decreasing at infinity measure µ on R, not
reduced to finitely many point masses, the associate orthogonal
polynomials Pn satisfy:

(λ− an)Pn(x) = bn−1Pn−1(x) + bnPn+1(x), n ≥ 1,

with bn > 0 for all n ≥ 0.
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The polynomials Pn are the same and orthogonal with respect to
any solution ρ, while the uniqueness is decided by the
Christoffel-Darboux kernel: There exists α /∈ R, with

∞∑
j=0

|Pn(α)|2 =∞,

if and only if the moment problem with data (sn) has a unique
solution. And then any other α /∈ R has the same property.
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Marcel Riesz
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Linear functionals extension argument

Sur le problème des moments, Troisième Note, Ark. Mat. Fys.
16(1923), 1-52.

Let (cn)∞n=0 be a moment sequence on the real line. A linear
functional

λ : C[z ] −→ C, zn 7→ cn, n ≥ 0,

is associated, with known positivity condition

λ(|p(z)|2) ≥ 0, p ∈ C[z ].
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For any continuous function φ : R −→ R of polynomial growth we
can define by induction a linear extension Λ(φ) satisfying:

Λ(p) = λ(p), p ∈ C[z ],

and
Λ(φ) ≤ Λ(ψ), φ ≤ ψ.

Remarks: 1) Then Λ is a positive, linear functional, hence
representable by an integral against a positive measure.
2) A similar non-constructive proof appears in Hahn-Banach
Theorem. It came later, and independently!
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In particular, for any φ continuous (of polynomial growth)

λ∗(φ) = sup
p≤φ

λ(p) ≤ Λ(φ) ≤ inf
φ≤q

λ(q) = λ∗(φ),

where p, q are polynomials.

Theorem. Let φ be a non-polynomial continuous function. If
λ∗(φ) < λ∗(φ), then and only then the moment problem is
indeterminate.

Or, either λ∗(φ) = λ∗(φ) for all continuous functions of polynomial
growth, or for none, different than polynomials.
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Proof based on a hard analysis extension of Hamburger work, in
the indeterminate case.
Christoffel’s function

ρ(z) =
1∑∞

0 |Pn(z)|2
= inf

p≥0,p(z)=1
λ(p)

satisfies
1

ρ(z)
≤ γeε(|z|)|z|, z ∈ C,

where γ > 0 is a constant and limr→∞ ε(r) = 0.

Moment indeterminateness



Assume (the indeterminate case) that λ∗(φ) = λ∗(φ) for a
non-polynomial function φ. Then there are sequences of
polynomials pk ≤ φ ≤ qn satisfying

lim
k,n

λ(qn − pk) = 0.

For a fixed value α ∈ C one has

|qk(α)− pn(α)| ≤ λ(qn − pk)

ρ(α)
.

Thus qk and pn converge to an entire function F , and

|F (α)| ≤ |p1(α)|+ K

ρ(α)
, α ∈ C.

But F (x) = φ(x), x ∈ R, has polynomial growth.
Phragmen-Lindelöf Theorem implies F is a polynomial,
contradiction!
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Example

φ(x) = cos(ax) = 1− a2x2

2!
+

a4x4

4!
− . . . , a > 0.

Has clear upper and lower partial sums (polynomials). Hence

λ∗(φ)− λ∗(φ) ≤ a2ns2n

(2n)!
, n ≥ 1.

Assume, in the indeterminate case λ∗(φ)− λ∗(φ) ≥ κ > 0. Then

(
s2n

(2n)!
)1/(2n) ≥ κ1/(2n)

a
,

or

lim inf(
s2n

(2n)!
)1/(2n) ≥ 1

a
.
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Since a is arbitrary, we find: if

lim inf
s

1/(2n)
2n

n
<∞,

then the moment problem is determinate.

Moment indeterminateness



Laguerre divergent series

∞∑
k=0

(−1)kk!wk

has radius of convergence R = 0. Yet, the continued fraction
expansion of

∞∑
k=0

(−1)k
k!

zk+1

is easily computable:

F (z) =
1

z + 1
1+ 1

z+ 2

1+ 2

z+ 3

1+ 3
z+...

,

and convergent.
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Stieltjes summation method

The limit is

F (z) =

∫ ∞
0

e−t

t + z
dt,

and we know that asymptotically

F (z) ∼
∞∑
k=0

(−1)k
k!

zk+1

for z →∞ along the imaginary axis (or a wedge with vertex at
z = 0).
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Higher dimensions

Still very challenging and incomplete when compared to the
classical 1D situation.
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Polynomially parametrized algebraic, affine curves

R 7→ X ⊂ Rd

Theorem (Kimsey-P.) Let µ be a positive measure on X , fast
decaying at infinity. Then µ is X -indeterminate if and only if

Λµ(λ) > 0,

locally, in a neighbourhood of at least one point of XC \ X .

Proof derived from monotonic approximation techniques inspired
by M. Riesz.
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Rational parametrizations are not welcome

Push forward via rational parametrizations may alter moment
indeterminateness. Example:

F (t) =

(
t,

1

1 + t2

)
, t ∈ R.

Any admissible measure in R2 supported by the image curve Γ of
equation y(1 + x2) = 1 is determinate, due to the fact that
bounded polynomials on Γ are separating points.
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Quantitative side: Christoffel function criterion

Let X ⊂ Rd be a polynomially parametrized, affine algebraic curve.
For a point λ ∈ XC \ X the bound on point evaluations is encoded
in

Λµ(λ) = inf
p(λ)=1

‖p‖2
2,µ, p ∈ C[XC] = C[z ]/I (XC), [p] 6= 0.

In general restricted by the degree filtration: deg p ≤ N.
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Plaumann-Scheiderer curves

Let (q) be a non-trivial, real principal ideal in R[x , y ]. Then

(q) + Σ2 = {p ∈ R[x , y ] : p(x) ≥ 0 for all x ∈ V (q)}

if and only if the following conditions hold:

(i) All real singularities of V (q) are ordinary multiple points with
independent tangents.

(ii) All intersection points of V (q) are real.

(iii) All irreducible components of V (q)′ (i.e., the union of all
irreducible components of V (q) that do not admit any
non-constant bounded polynomial functions) are non-singular
and rational.

(iv) The configuration of all irreducible components of V (q)′

contains no loops.
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Indeterminateness criterion

Theorem (Kimsey-P.) Let X ⊂ Rd be a real algebraic curve on
which all positive polynomials are sums of squares. Let µ be an
admissible measure supported by X which admits analytic bounded
point evaluations on XC. Then the measure µ is indeterminate.
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Examples of polynomially parametrized curves

Abhyankar and Moh Theorem: a rational curve X ⊂ C2 admits
a polynomial parametrization if and only if it can be transformed
into a straight line by invertible linear transforms and
automorphisms of the form

x1 = x + h(y), y1 = y , h ∈ C[y ].

Zaindenberg and Lin Theorem: any simply connected,
irreducible polynomial curve in C2 is equivalent, in the above
sense, to a basic cusp curve:

xk = y `,

where k , ` are relatively prime positive integers.
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Abhyankar and Moh Theorem: A rational curve X ⊂ C2 admits
a polynomial parametrization if and only if its compactification in
projective space contains a single place at infinity.
That means that the polynomial equation describing the curve

X = {(x , y) ∈ C2; F (x , y) = 0}

starts with an exact power of a linear function, plus a reminder:

F (x , y) = (ax + by)d + G (x , y), |a|+ |b| > 0, degG < d .
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Low degree examples

A cubic with a nodal singular point admits a polynomial
parametrization:

y2 = x2(x + 1); x = t2 − 1, y = t3 − t.

Among 2D cuartics, the Kampyle of Eudoxus is a polynomial curve:

x4 = a2(x2 + y2), a > 0,

or better, in polar coordinates

ρ =
a

cos2 θ
,

can be rationally parametrized as function of t = tan θ2 .
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Kampyle
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Another quartic in two dimensions exhibits a Ramphoid cusp (that
is both branches at the singular point are tangent to the same
semi-axis):

y4 − 2axy2 − 4ax2y − ax3 + a2x2 = 0, a > 0,

with parametrization

x = at4, y = a(t2 + t3).
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Ramphoid cusp
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L’Hospital quintic

64y5 = a(25x2 + 20y2 − 20ay + 4a2)2, a > 0,

with parametrization

x =
a

2
(t − t5

5
), y =

a

4
(1 + t2)2.
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L’Hospital Quintic
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The touch of Fantappiè transform

Γ ⊆ Rd is an acute, convex and solid cone and
Γ∗ = {η ∈ Rd : η · x ≥ 0 for all x ∈ Γ} be the dual cone of Γ.
Let µ be an admissible measure supported on Γ∗. In this case the
Fantappié’s transform

Fµ(z ,w) =

∫
Γ∗

dµ(x)

w · x − z

admits a complex analytic extension to the domain

Rew ∈ Γ and Re z < 0

and determines µ.
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In particular the range of real values w ∈ Γ, z < 0, is a uniqueness
set for the complex analytic function Fµ defined on the tube
domain over this convex set. The values

Fµ(−1, a) =

∫
Γ∗

dµ(x)

a · x + 1
, a ∈ Γ,

determine the measure µ.
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Theorem (Kimsey-P.) Let Γ ⊆ Rd be an acute, convex and solid
cone and let µ be an admissible measure supported by the dual
cone Γ∗. There exists a different, admissible measure supported on
Γ∗ and moment equivalent to µ if and only if there exists a ∈ intΓ,
such that

sup
p(x)≤ 1

a·x+1
x∈Γ∗

∫
pdµ < inf

q(x)≥ 1
a·x+1

x∈Γ∗

∫
qdµ,

where p, q are polynomials functions defined on Γ∗.
Moreover, the range of values of a above is an open, everywhere
dense subset of int Γ.
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Indeterminate probability distributions

Theorem. (Berg, 1988) X random variable with normal density
1√
π
e−x

2
. Then

X 2n+1 is indeterminate for n ≥ 1 integer;

|X |α is indeterminate for α > 4 and determinate for 0 < α ≤ 4.

The later in both Stieltjes and Hamburger sense.
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Log-normal distribution

Of density d(x) = 1√
2π

1
x e
− (log x)2

2 defined on the semi-axis is

indeterminate as showed by Stieltjes.

Specifically, the densities

d(x)[1 + r sin(2π log x)], r ∈ [−1, 1]

have the same power moments.
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