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Our operator

(&) = /R e 2™ f(x) dx.
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Our operator

~

f(€) = /R e 2™ f(x) dx.

Fourier uncertainty: "one cannot have an unrestricted control of a
function and its Fourier transform simultaneously."
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THE STAR. WARS SAGA CONTINUES
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Alternative titles

@ Why should you care about the function

(x? — 1) coth (%5) cos X — v/3 X sin X R
x6 —1 '
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Alternative titles

@ Why should you care about the function

(x? — 1) coth (%5) cos X — v/3 X sin X R
x6 —1 '

© The moving company project
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This is a story about many mathematical and non-mathematical values
that | particularly like...
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Prelude
Banff, Canada, 2015

The Geometry, Algebra and Analysis of Algebraic Numbers
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Our basic principle

Theorem (Paley-Wiener)
For f € L2(R), the following are equivalent:

(i) supp(f) C [-A, A].
(if) f can be extended to an entire function of order 1 and

f(2)| < C.e™2+9)lzl forall > 0.

Raymond Paley (1907 - 1933) Norbert Wiener (1894 - 1964)
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Monotone extremal functions

There | gave a talk about a work with F. Littmann.

Theorem

Let F : C — C be a real entire function such that:
(i) F has exponential type at most 2r;

(i) F(x) > sgn(x) forall x € R;

(iii) F is non-decreasing on (—o0,0) and non-increasing on (0, o).
Then

/_oo {F(x)—sgn(x)}dx > 2.

The unique extremizer is:

——2/ i 2 Sds—1.
o T25(s+1)2
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Hilbert’s inequality

Theorem (around 1908)

Ifay,...,ay € C then

Emanuel Carneiro
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Weighted Hilbert’s inequality

Theorem (Montgomery and Vaughan - 1974)

Let N € N. Let \1,...,\N be a set of distinct real numbers and define
On = min{|An — Am| : m#n}. Ifay,...,an € C then

aman
Z (Am—An)

m#n >\n)

<Cz:|a”| .
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Weighted Hilbert’s inequality

Theorem (Montgomery and Vaughan - 1974)

Let N € N. Let \1,...,\N be a set of distinct real numbers and define
On = min{|An — Am| : m#n}. Ifay,...,an € C then

aman
Z (Am—An)

m#n >\n)

<Cz:|a”| .

@ Montgomery and Vaughan: C = (3/2);
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Weighted Hilbert’s inequality

Theorem (Montgomery and Vaughan - 1974)

Let N € N. Let \1,...,\N be a set of distinct real numbers and define
On = min{|An — Am| : m#n}. Ifay,...,an € C then

aman
Z (Am—An)

m#n >\n)

<Cz:|a”| .

@ Montgomery and Vaughan' C = (8/2)r;
@ Preissmann (1984): C = (1.31...)7.
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Weighted Hilbert’s inequality

Theorem (Montgomery and Vaughan - 1974)

Let N € N. Let \1,...,\N be a set of distinct real numbers and define
On = min{|An — Am| : m#n}. Ifay,...,an € C then

aman
Z (Am—Xn)

m#n

<Cz:|a”| .

@ Montgomery and Vaughan: C = (3/2);
@ Preissmann (1984): C = (1.31...)7.
@ Our proof is for C = 27 (via Fourier analysis).
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Weighted Hilbert’s inequality

Theorem (Montgomery and Vaughan - 1974)

Let N € N. Let \1,...,\N be a set of distinct real numbers and define
On = min{|An — Am| : m#n}. Ifay,...,an € C then

> i < ey Sil

iz (Am = An)

@ Montgomery and Vaughan: C = (3/2);
@ Preissmann (1984): C = (1.31...)7.

@ Our proof is for C = 27 (via Fourier analysis).
@ Conjecture C = .
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A nice memory
A stroll in the cemetery
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A nice memory

A stroll in the cemetery
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A nice memory
A stroll in the cemetery

@ We discussed the following "monotone one-delta problem":

Find F : R? — R, radial and non-negative, of exponential type 2,
such that F(0) > 1 and [, F(X) dx is minimal.
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A nice memory

A stroll in the cemetery
@ We discussed the following "monotone one-delta problem":

Find F : RY — R, radial and non-negative, of exponential type 2,
such that F(0) > 1 and [, F(X) dx is minimal.

@ This boils down to the following problem (in dimension 1): given
g : C — C of exponential type 7 such that

[ 1gGoPixax =1,
R
find the minimal value of

/ 19(x)BIx|9+ dx.
R
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A nice memory

A stroll in the cemetery
@ We discussed the following "monotone one-delta problem":

Find F : RY — R, radial and non-negative, of exponential type 2,
such that F(0) > 1 and [, F(X) dx is minimal.

@ This boils down to the following problem (in dimension 1): given
g : C — C of exponential type 7 such that

[ 1gGoPixax =1,
R
find the minimal value of
[ 1P} ax.
R
@ At the moment | could only solve this for d = 2.
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Fast forward to 2022 at ICTP
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Our analysis group became bigger

Antonio Pedro Ramos

Sheldy Ombrosi Lucas Oliveira Mateus Sousa
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A toy model problem
o For f € L2(R) with supp(f) C [—3, 3], find the sharp inequality:

/|f(x)|2dx§ c/ IF(x)[2 X2 dx.
R R
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A toy model problem
o For f € L2(R) with supp(f) C [—3, 3], find the sharp inequality:

/|f(x)\2dx§ c/ 1F(x)[2 X2 dx.
R R

@ Solution:

115 =" [f(n+ 1) = 4Z%|f<n+ DI

nez nez
<43 (n+ 12 |f(n+ )P

nez
2
= 4| x f|3.
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A toy model problem
o For f € L2(R) with supp(f) C [—3, 3], find the sharp inequality:

/|f(x)\2dx§ c/ 1F(x)[2 X2 dx.
R R

@ Solution:

1
1B =>"[f(n+ DI =43 g 1f(n+ I
nez nez
<4 (n+ 3P |f(n+ ?
nez
= 4||x f||3.

Recall f(x) = Y ez L”z) f(n+ %) . Equality if and only if

m(x—n—1})
f(x):cﬂ.

2 _ 1
X —3
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Poincaré inequalities

Stack Q search on Mathematics

3 MATHEMATICS

Home Estimating Poincare constant for unit interval
PUBLIC Asked 10 years, 5 months ago  Modified 10 months ago  Viewed 2k times
® Questions |
it a  Iwant to show that the Poincare constant for the W,'*(0, 1) is smaller than 1. More specifically, I
3 want to show that there is a constant C < 1 such that for any f € C&(0, 1) (compactly supported
Users 5  smooth) we have the inequality
,
Unsheulered - s
TEAMS where ||-|| is the L? norm.

Stack Overflow for
Teams - Start
collaborating and

‘The proof of Poincare inequality that I know (using Cauchy-Schwarz) gives an estimate of C = 2,
while the Wikipedia article seems to say that optimally C' <z~ . I'm looking for a simple proof for

Shaling oranetionsl this special case. I don't need a very sharp estimate, just smaller than 1, and would appreciate a
knowledge. hint or a reference.
a

Share Cite Follow asked Apr 13, 2013 at 19:31

Pyl tomasz

Why Teams?

manuel Carneiro ncertainty principles

sign up

Featured on Meta

[J Sunsetting Winter/Summer Bash:
Rationale and Next Steps

Linked
How to prove that a(u, v) = f,' u'v/dx
is coercive

Integral inequality between function and
derivative

2
n Prove
1 2 1 2
Jeldx < 5 [ 17 oFdx
1 Poincaré inequality in dimension n = 1

Related

4 poincare-sobolev inequality
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Poincaré inequalities

Home
pUBLIC
@ Questions
Tags
Users
Unanswered
TEAMS
Stack Overflow for
Teams - Start
collaborating and

sharing organizational
knowledge.

v

0

Create a free Team

Why Teams?

The constant you are looking for s the following:

1. LIPS P
F:mf{/ﬂ (r) dx./n(f) dx=1¢. (¢}
Since
! 2
/n (fYdx=(=r" 1,
you are in fact looking for the first eigenvalue of the following Sturm-Liouville problem:

_e
@x

=Aif,
@
fO) = f(1)=0.
Indeed, we can now rewrite the minimization in (1) as
o
ing &S0
7 {f.f)
and this equals exactly the smallest eigenvalue of the problem (2), just like in ordinary linear
algebra; see Wikipedia on the Rayleigh quotient.

‘The problem (2) can be integrated explicitly and you find that the first eigenvalue is 72 with
eigenfunction sin(rx) (and scalar multiples of it). Therefore

c l<].
z

Share Cite Follow edited Nov 4, 2022 at 13118 answered Apr 13, 2013 at 19:49

Giuseppe Negro
31.4k ®6 W64 A219

[ Poincare-like inequalty
4 Relations between Fractional Sobolev
spaces H* and

[JEI Proving Poincare in One Dimension

[ER Bound gradientin H3(Q) by Laplacian

Hot Network Questions

@ GTK bindings for Fortran

& Could a species be highly apathetic to their
brethren yet have a strong pack/herd
mentality?

@ Anydice: Reroll the lowest of 3d10 and keep the
middle one

19 15 itlegal to collect payment for event
entertainment services up front in case they
cancel?

& Indium and Gallium Toxicity: Part 1

more hot questions

Question feed
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One may ask...

o For f € L2(R) with supp(f) C [—3, 3], find the sharp inequalities:
/|f(x)|2dx§ c/ |1£(x)[2 x* dx.
R R
/|f(x)|2dx§ c/ |£(x)[2 x® dx.
R R
/|f(x)|2dx§ C/ |(x)|? x® dx.
R R

and so on...
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A sharp uncertainty principle

For example, for f € L2(R) with supp(f) C [-3, 31,

/]f(x)|2dx§/|f(x)|2x6dx.
R R
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A sharp uncertainty principle

Theorem
For f € L2(R) with supp(f) C [-3, ], we have
/ FO)2 dx < / ()2 X6 dx.
R R
This inequality is sharp and the unique extremizer is

(x2 — 1) coth (%é) cosmX — /3 X sinwx
f(x) = 6 .
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Moving

Emanuel Carneiro Uncertainty principles Sep 2024



Setup

@ Foreacha > —1andd > 0, let H,(d; ¢) be the Hilbert space of
entire functions F : C? — C of exponential type at most § with

1/2
1F lI3¢a a6y = (/Rd |F(x)[? |X|2°‘+2“”dX) < 0.
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Setup

@ Foreacha > —1andd > 0, let H,(d; ¢) be the Hilbert space of
entire functions F : C? — C of exponential type at most § with

1/2
1F lI3¢a a6y = (/Rd |F(x)[? |X|2°‘+2“”dX) < 0.

@ For o > 8 > —1 note that H.(d;d) C Hg(d; ).
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Setup

@ Foreacha > —1andd > 0, let H,(d; J) be the Hilbert space of
entire functions F : C? — C of exponential type at most § with

1/2
1F 130 (a:0) = (/Rd |F(x)[? |X|2°‘+2“”dX> < 0.

@ For o > 8 > —1 note that H.(d;d) C Hg(d; ).

@ Extremal Problem (EP): Fora > g > —1and § > O real
parameters, and d € N, find the value of

Juo |FOR) P [x[222- dx

EP ;a0) = :
NIV o i (e o FOOE 2720
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Part | - Qualitative properties
A change of variables yields:

(EP)(e, B;d;8) = 6°°72* (EP)(a, B;d; 1).
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Part | - Qualitative properties
A change of variables yields:

(EP)(ev, B;d; 8) = 6°°72* (EP)(a, B;d; 1).

Theorem (Dimension shifts)

(EP)(a, 8;d;6) = (EP)(a, 8;1;6).
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Part | - Qualitative properties
A change of variables yields:

(EP)(ev, B;d; 8) = 6°°72* (EP)(a, B;d; 1).

Theorem (Dimension shifts) J

(EP)(a, 8;d;6) = (EP)(a, 8;1;6).

@ Proof involves a suitable radial symmetrization mechanism and an
auxiliary extremal problem.
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Part | - Qualitative properties
A change of variables yields:

(EP)(a, B;d;6) = 62°~2(EP)(ar, B d; 1).
Theorem (Dimension shifts)

(EP)(, 8;d;9) = (EP)(«, 5;1;9). J

@ Proof involves a suitable radial symmetrization mechanism and an
auxiliary extremal problem.

Theorem (Radial extremizers)
There exists a radial extremizer for (EP)(«, 5;d; 9). J
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Part | - Qualitative properties
A change of variables yields:

(EP)(a, B;d;6) = 62°~2(EP)(ar, B d; 1).
Theorem (Dimension shifts)

(EP)(av, 5;d;0) = (EP)(c, B;1:9). }

@ Proof involves a suitable radial symmetrization mechanism and an
auxiliary extremal problem.

Theorem (Radial extremizers)
There exists a radial extremizer for (EP)(«, 5;d; 9).

Theorem (Continuity)

The function (a, 8, 6) — (EP)(«a, 8; d; 0) is continuous in the range
a>pB>—-1ands > 0.
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Part Il - Asymptotics

Recall we are looking at:

Ja [F)IZ [x[2+T dx

EP i1:1) = .
(EF)(a 5:1:1) 0£feHa(1:1) [p [F(X)|?|x]28+T dx
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Part Il - Asymptotics
Recall we are looking at:

Je [FOO [xP+T dx
0£feHa(1:1) [p [F(X)]2 [x[28+1 dx

(EP) (e, B;1;1) :=

Theorem (Asymptotics)
Fora > 8 > —1 we have

+O((%> '°g(2(‘2‘5_”é§‘é;f$”))’

where the implied constant is universal.
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Part Il - Sharp constants
Let A,(z) =z7"J,(2) and B,(2) = z7"J,+1(2). Set

_B2) _ dnr(2)
A(2) J(z) -

C.(2)
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Part Il - Sharp constants
Let A,(z) =z7"J,(2) and B,(2) = z7"J,+1(2). Set

B2 ()
GO =20~ a)

Theorem

Let 3 > —1, letk € N and set \o := ((EP)(3 + k,3; 1 ;1))1/2/(.
(i) Ifk =1 we have \g = jg 1.

(i) Ifk > 2, setl = |k/2]. Then X is the smallest positive solution of
Ag()\) det V/g()\) =0,

where Vs()\) is the ¢ x ¢ matrix with entries (setw := e™'/¥)

k—1
_ r(4¢—2m—2j+3 r
(V) py = D_ "t ) C ().
r=0
v

Sep 2024
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@ Forinstance, when k = 3 we have

A= Ag(M\)(Cs(N) — Ca(wA) + Cs(w?N))
where w = e™/3.

Uncertainty principles



@ For instance, when k = 3 we have
A Ag(N)(Cs(N) — Cp(wA) + Ca(w?N)).

where w = e™/3,
@ When 3 = —1, this reduces to

_sin A (cosA — cosh(v/3)))

A=
cos A + cosh(v/3))

and one can see that the smallest root is .
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@ For instance, when k = 3 we have
A Ag(N)(Cs(N) — Cp(wA) + Ca(w?N)).

where w = e™/3,
@ When 3 = —1, this reduces to

sin A (cos A — cosh(v/3)))
cos A + cosh(v/3\)

A=

and one can see that the smallest root is .
@ This leads to
/ )2 dx < / ()2 X5 dx
R R

~

when supp(f) € [-3, 3].
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Application | - Sharp Poincaré inequalities

Corollary
/|f(")(x)|2dx < c/|f<m>(x)|2dx
/ /

for f € HS"™ (1))
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Application | - Sharp Poincaré inequalities

Corollary
/|f(”)(x)|2dx < c/yf(m>(x)|2dx
/ /

for f € HS"™ (1))

@ Steklov (1896): (m,n) = (1,0),(2,1)
@ Janet (1931): (n+1,n), n> 2.
@ Petrova (2017): (m, n) integer.
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Application | - Sharp Poincaré inequalities

Corollary
/|f(">(x)|2dx < C/]f(m)(x)\zdx
/ /

for f € HS"™ (1))

@ Steklov (1896): (m,n) = (1,0),(2,1)
@ Janet (1931): (n+1,n), n> 2.
@ Petrova (2017): (m, n) integer.

Corollary
ny n 2 m m 2
/B,W (A"g)(x)|"dx < C/B,W (A™g)(x)|” dx

forg e WS™™3(B;)
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Poincaré inequalities vs. Fourier uncertainty

PN

Emanuel Carneiro
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Application Il - Monotone one delta problem (even @)

Problem: Find F : RY — R, radial and non-negative, of exponential
type 2, such that F(0) > 1 and [, F(x) dx is minimal.
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Application Il - Monotone one delta problem (even @)

Problem: Find F : RY — R, radial and non-negative, of exponential
type 2, such that F(0) > 1 and [, F(x) dx is minimal.

Solution boils down to

/ g()2|x]dx < C / 9O0[21x* " dx.
R R

for g of exponential type .
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Application Il - Monotone one delta problem (even @)

Problem: Find F : RY — R, radial and non-negative, of exponential
type 27, such that F(0) > 1 and [,4 F(x)dx is minimal.

Solution boils down to
[ 1900 Ixax < © [ IgGfEixH ax.
R R
for g of exponential type .
Remark: The case d = 1 was numerically studied by A. Chirre, D.

Dimitrov, E. Quesada-Herrera and M. Sousa (PAMS '24). They arrived
a very precise approximation of the answer (1.27...).
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A generalization (de Branges spaces)

@ Let E : C — C be a Hermite-Biehler function, i.e. |[E*(2)| < |E(2)|

for z € U (here E*(z) := E(2)).
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A generalization (de Branges spaces)

@ Let E : C — C be a Hermite-Biehler function, i.e. |[E*(2)| < |E(2)|

for z € U (here E*(z) := E(2)).
@ Let H(E) be the space of entire functions F such that

IFl2ye, ::/R|F(x)|2|E(x)|—2dx <o

and such that F/E and F*/E have bounded type on ¢/ and
non-positive mean type.
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A generalization (de Branges spaces)

@ Let E : C — C be a Hermite-Biehler function, i.e. |[E*(2)| < |E(2)|
for z € U (here E*(z) := E(2)).
@ Let #(E) be the space of entire functions F such that

IFl2ye, ¢=/R|F(X)\2|E(X)|2dx <o

and such that F/E and F*/E have bounded type on ¢/ and
non-positive mean type.

@ The problem is

ZKF|3
(EP2)(E; k) :== in %
02feH(E) |3, g

Write E = A — iB with A and B real entire.
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Glimpse of the strategy
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Glimpse of the strategy

o If fis even (set & = m(n — 3)).

f(z) = Z 2§nf(£n)(
n=1

Uncertainty principles
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Glimpse of the strategy

o If fis even (set & = m(n — 3)).

2 . . cosZ
Z Enf(&n) Z_a

e If g = Z¥fis in the space (say k is even) then

2 k+1 cosZ ‘
Z S
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Glimpse of the strategy

o If fis even (set & = m(n — 3)).

2 . . cosZ
Z Enf(&n) Z_a

e If g = Z¥fis in the space (say k is even) then

2 k+1 cosZ ‘
Z S

@ The constraints 0 = g(0) = ¢’(0) = ... = g*~1)(0) lead to (let
f(&n) = an)

ng @8, =0 (j=1,2,...,k/2).
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Glimpse of the strategy

o If fis even (set & = m(n — 3)).

cos Z
Zzén (&) o~ eay:

e If g = Z¥fis in the space (say k is even) then

2 k+1 cosZ
Z gy

@ The constraints 0 = g(0) = g’(0) = ... = g("—”(O) lead to (let
f(&n) = an)
ng 2/+1an— (121727ak/2)

@ Hence one arrives at the following problem Find

2
2k > et @n
AZK = inf £=p=1Sncn
{an}eA Zn1
Sep 2024
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Part Ill: Two more years later...
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Sign uncertainty principle
Bourgain, Kahane and Clozel, 2010

@ A continuous f : RY — R is eventually non-negative if f(x) > 0 for
sufficiently large |x|, and we define

r(f) :=inf{r >0 : f(x) >0 forall |x| > r}.

f(x) = (x1° — 8x8 + 15x5 — x* —2x2 — 1)e~**
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Sign uncertainty principle
Bourgain, Kahane and Clozel, 2010

@ Consider the family:
f e L'(RY)\ {0} continuous, even, real-valued; f € L'(RY);

A(d) = f(0)= fraf <0 ; F(0) = fpaf<O;
fandf are eventually non-negative.
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Sign uncertainty principle
Bourgain, Kahane and Clozel, 2010

@ Consider the family:
f e L'(RY)\ {0} continuous, even, real-valued; f € L'(RY);

A(d) = f(0)= fraf <0 ; F(0) = fpaf<O;
fandf are eventually non-negative.

@ Define

A(d) := fei,T(:d) r(f) r(f).

(note that this is invariant under dilations f;5(x) := f(dx)).
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Sign uncertainty principle
Bourgain, Kahane and Clozel, 2010

@ Consider the family:
f e L'(RY)\ {0} continuous, even, real-valued; f € L'(RY);

A(d) = f(0)= fraf <0 ; F(0) = fpaf<O;
fandf are eventually non-negative.

@ Define

A(d) := fei,?l](cd) r(f) r(f).

(note that this is invariant under dilations f;5(x) := f(dx)).

@ They show:
d+2 d
> >/ =—.
2T Ad) = 2re
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A related problem

Given a locally finite, even and non-negative Borel measure n on R,
6 >0, find

E(u;6):=  inf F
(14:6) oﬁleng(mé)f( )

where the infimum is taken over the class of functions

F real entire of exp. type at most ¢;
E(w;0) =4 Fel'(R,p) and [, F(x)du(x) <0;

F is eventually non-negative.
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Zeros of L-functions

@ Katz and Sarnak conjectured that for each family {L(s, f), f € F}

Z Z¢< Iogcf> /¢(X

fe]-'(Q Ve

lim
Q— o0 ’.7:

for ¢ : R — R is an even, Schwartz with $ compactly supported.

W(x) = 1:|:aSIn27TX

+ bd(x).
@ To find bounds for ~¢: let

> ¢>Ofor\x|>r
> [ & x)dx < 0.
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A glimpse on our results
Theorem (with A. P. Ramos and T. Ismoilov)

If du(x) = |E(x)|~2 dx (in an integral sense), letting &1 be the first
positive zero of A(z) = E(z) + E(2),

E(u:0) = &1
Unique extremizers are
A(z)?
F(z2) = ——%-.
O z-g
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A glimpse on our results
Theorem (with A. P. Ramos and T. Ismoilov)

If du(x) = |E(x)|~2 dx (in an integral sense), letting &1 be the first
positive zero of A(z) = E(z) + E(2),

E(u:0) = &1
Unique extremizers are
A(z)?
F(z2) = ——%-.
O z-g

@ Polyn. reductions: one sign change F(x) = (x2 — r®)H(x); H>0

Emanuel Carneiro Uncertainty principles

Sep 2024




A glimpse on our results
Theorem (with A. P. Ramos and T. Ismoilov)

If du(x) = |E(x)|~2 dx (in an integral sense), letting &1 be the first
positive zero of A(z) = E(z) + E(2),

E(u:0) = &1
Unique extremizers are
A(z)?
F(z2) = ——%-.
O z-g

@ Polyn. reductions: one sign change F(x) = (x? — r?)H(x); H > 0.
@ Krein factorization H(z) = U(z)U(2).
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A glimpse on our results
Theorem (with A. P. Ramos and T. Ismoilov)

If du(x) = |E(x)|~2 dx (in an integral sense), letting &1 be the first
positive zero of A(z) = E(z) + E(2),

E(u:0) = &1
Unique extremizers are
A(z)?
F(z2) = ——%-.
O z-g

@ Polyn. reductions: one sign change F(x) = (x? — r?)H(x); H > 0.
@ Krein factorization H(z) = U(z)U(2).
o

2|U(x)2dp
Fan<0 em 2> XU
/ "= = TIUX)Rdp
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Emanuel Carneiro

Many thanks!

Uncertainty principles



Zeros of L-functions

@ Let F be a set of number theoretical objects. For f € F associate

L(s,f) = ZAf s,

Conductor ¢ and assume GRH. Denote the non-trivial zeros by
pr =% +iv. Let F(Q) = {f € F : ¢s= Q}.
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Zeros of L-functions

@ Let F be a set of number theoretical objects. For f € F associate

= ZAf(n) n—s,
n=1

Conductor ¢ and assume GRH. Denote the non-trivial zeros by
pr =2+ iy Let F(Q) = {f€ F : ¢r= Q}.
@ Katz and Sarnak conjectured that for each family {L(s, f), f € F}

. ey 3, (5 - [t

fe}' 0l

for ¢ : R — R is an even, Schwartz with $ compactly supported.
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For the five symmetry groups, Katz and Sarnak determined the density
functions:

WU(X) =1;
sin 2wX
WSP(X) =1- 2rx
Wo(x) = 1+ 38(x);
sin27X

WSO(even)(X) =1+

27X

sin 2wX
Wso(oaa)(X) = 1 — 5 x + 6(x).
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Analysis question
@ Assume the validity of

3 Yo = [ ot Weax

fe]-' Q)

lim
Q—o0 ’]:

for even Schwartz functions ¢ : R — R with supp (¢) € [~A, A],
with A > 0 fixed; what is the sharpest upper bound that one can
get for the height of the first zero in the family as Q — ~0?
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Analysis question
@ Assume the validity of

am y; Z Z¢>< Iogcf) = /R P(x) Wa(x)dx

fe]-' 0l

for even Schwartz functions ¢ : R — R with supp (¢ ) € [~A, A],
with A > 0 fixed; what is the sharpest upper bound that one can
get for the height of the first zero in the family as Q — co?

@ Put ¢(x) = (x2 — a%)|g(x)|? with [, ¢(x) Wg(x)dx < 0. Then

V¢ log Cf

limsup m|n
2m

o)
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Analysis question
@ Assume the validity of

o y]—“ Z Z(b(%Iongc,) Z/R¢(X) Wea(x) dx

fe]-' 0l

for even Schwartz functions ¢ : R — R with supp (¢ ) € [~A, A],
with A > 0 fixed; what is the sharpest upper bound that one can
get for the height of the first zero in the family as Q — co?

@ Put ¢(x) = (x2 — a%)|g(x)|? with [, ¢(x) Wg(x)dx < 0. Then

V¢ log Cf

limsup m|n
2m

o)

@ Note that the blue condition is equivalent to

Ji PG00 Walx)dx _
floCOP We(xyax =%
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Proof
@ Let y(x) := M(x) — sgn(x) and ¥5(x) := ¥(dx), for 6 > 0.
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Proof

@ Let ¢y(x) := M(x) — sgn(x) and ¥s5(x) := ¥(dx), for 6 > 0.

-z

@ Then vs(t) = —(mit)~" for [t| > 6.
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Proof
@ Let ¢y(x) := M(x) — sgn(x) and ¥s5(x) := ¥(dx), for 6 > 0.

—Z

@ Then vs(t) = —(mit)~" for [t| > 6.
@ Order the sequence {\,}_, sothat 6y > 6, > ... > dy > 0. Then

’)\m - )\n‘ 2 5min(m,n)-
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Proof
@ Let ¢y(x) := M(x) — sgn(x) and ¥s5(x) := ¥(dx), for 6 > 0.
@ Then vs(t) = —(mit)~" for [t| > 6.
@ Order the sequence {\,}_, sothat 6y > 6, > ... > dy > 0. Then

’)\m - )\n‘ > 5min(m,n)-

N 00 N . 2
0< Z / [%j(x) — 15, ( X)} Z ame 27nx|  gx
j=177°° e
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Proof
@ Let ¢y(x) := M(x) — sgn(x) and ¥s5(x) := ¥(dx), for 6 > 0.
@ Then vs(t) = —(mit)~" for [t| > 6.
@ Order the sequence {\,}_, sothat 6y > 6, > ... > dy > 0. Then

’)\m - >\n‘ 2 5min(m,n)-

N 00 N ' 2
0< Z / [%j(x) — 15, ( X)} Z ame 27nx|  gx
j=177°° e

N
Z aman 7/’6 —An) — %,:()‘m - )"7)]

1 mn=j

I
Mz

-
Il
L
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Proof
@ Let ¢y(x) := M(x) — sgn(x) and ¥s5(x) := ¥(dx), for 6 > 0.
@ Then vs(t) = —(mit)~" for [t| > 6.
@ Order the sequence {\,}_, sothat 6y > 6, > ... > dy > 0. Then

’)\m - >\n‘ 2 5min(m,n)-

N 00 N ' 2
0< Z / [%j(x) — 15, ( X)} Z ame 27nx|  gx
j=177°° e

N
Z aman 7/’6 —An) — %,:()‘m - )"7)]

m,n=j

I
E

-
Il
A

L

min(m,n)

andp Y [Uy(\m—An) = P, O = An)]

1 j=1

I
Mz

n

3
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Proof
@ Let ¢y(x) := M(x) — sgn(x) and ¥s5(x) := ¥(dx), for 6 > 0.
@ Then vs(t) = —(mit)~" for [t| > 6.
@ Order the sequence {\,}_, sothat 6y > 6, > ... > dy > 0. Then

’)\m - )\n‘ 2 5min(m,n)-

2
00 N |
0< Z/ [’QZJ(;j(X) — 1/J5j71 (X)] E ame—27rl>\mx dx
j=177> oy

j=1 m,n=j
N min(m,n) - -
= Z aman Z [T/J(Sj(/\m — An) — T/’(S,q (Am — )\n)]
m,n=1 j=1

N
= Z aman %min(m,n)(/\m - )\n)
m.n=1
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Proof
@ Let ¢y(x) := M(x) — sgn(x) and ¥s5(x) := ¥(dx), for 6 > 0.
@ Then vs(t) = —(mit)~" for [t| > 6.
@ Order the sequence {\,}N_, so that d; > dp > ... > dy > 0. Then

’)‘m - )\n‘ > 5min(m,n)-

2
oo N |
0< Z/ [Q,ZJ(;].(X) - ¢5j71 (X)] E ame—27rl>\mx dx
j=177%° o

j:1 m,n:j
N min(m,n) - o
e Z aman Z [T/J(Sj(/\m — An) — 7/161-,1 (Am — )\n)]
m,n=1 j=1
N —~ N ama X a)?
= Z aman Ysmin(m,n)(Am — An)= — Z M‘F ¢(O)Z 52 :

m,n=1 m,n=1 n=1
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