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Why Markov’s transform?

Let µ be a positive measure on R, with all power moments finite.
The Cauchy transform

F (z) =

∫
R

dµ(t)

t − z
,

maps =z > 0 to =F (z) > 0.

log(1 + F (z)) exists and = log F (z) ∈ (0, π):

log(1 + F (z)) =
1

π

∫
φ(t)dt

t − z
, 0 ≤ φ ≤ π.
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Formal exponential transform

The power moments sk(g) =
∫
g(t)tndt, k ≥ 0, can be arranged

into the generating analytic series (Cauchy transform):

∞∑
k=0

sk(g)

zk+1
= −

∫
g(t)dt

t − z
, |z | > 1.

The key property of these rather special generating series is
encoded in the formal exponential transform:

exp[−
∞∑
k=0

sk(g)

zk+1
] = 1−

∞∑
k=0

tk(g)

zk+1
.
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Extremal solutions

The moment sequence (sk(g))∞k=0 of an integrable function with
values in [0, 1] is characterized by the positive semi-definiteness of
the Hankel matrix (tk+`(g))∞k,`=0.

The measure g(t)dt is determined by finitely many of its moments
if and only if there exists an integer d , such that

det[tj+`(g)]dj ,`=0 = 0,

in which case we already know that g is the sublevel set of a
polynomial function, that is a finite collection of intervals.
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Matrix perturbation

Let A,B be self-adjoint, d × d complex matrices. Assume

B − A = ξ〈·, ξ〉 = ξ ⊗ ξ.

The min-max principle implies:

λ1(A) ≤ λ1(B) ≤ λ2(A) ≤ λ2(B) ≤ . . . ≤ λd(A) ≤ λd(B).

Denote

g =
n∑

j=1

χ[λj (A),λj (B)].
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Perturbation determinant

Then

det(B − z)(A− z)−1 =
d∏

j=1

λj(B)− z

λj(A)− z
= exp

∫
g(t)dt

t − z
.

On the other hand

det(B − z)(A− z)−1 = det[I + (A− z)−1ξ ⊗ ξ] =

1 + 〈(A− z)−1ξ, ξ〉 = 1 +

∫
dµ(t)

t − z
,

in view of the spectral theorem.
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The phase shift

For any polynomial p ∈ C[X ] one has

trace[p(B)− p(A)] =

∫
p′(t)g(t)dt.

Note that g(t) is any extremal solution to the L-problem of
moments on the real line.
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Infinite dimension

There exists a constructive bijective correspondence between:

1) Linear bounded self-adjoint operators A with a prescribed cyclic
vector ξ;

2) Functions g ∈ L1
comp(R, dx) with values in [0, 1];

3) Positive measures µ of compact support on the real line.
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det(A + ξ ⊗ ξ − z)(A− z)−1 = 1 + 〈(A− z)−1ξ, ξ〉 =

1 +

∫
µ(dx)

x − z
= exp

∫
g(t)dt

t − z
, =z > 0.

trace(f (A + ξ ⊗ ξ)− f (A)) =

∫
f ′(t)g(t)dt, f ∈ C(1)(R).
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Hyponormal opperator

Is a linear bounded operator T acting on a Hilbert space H subject
to ithe commutator inequality

[T ∗,T ] = T ∗T − TT ∗ ≥ 0

That is, for every vector x ∈ H, on has

〈T ∗Tx , x〉 ≥ 〈TT ∗x , x〉,

or equivalently
‖Tx‖ ≥ ‖T ∗x‖, x ∈ H.
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Examples

If S = N|H is the restriction of a normal operator to an invariant
subspace H, then

‖Sx‖ = ‖Nx‖ = ‖N∗x‖ ≥ ‖PN∗x‖ = ‖S∗x‖, x ∈ H,

where P denotes the orthogonal projection of the larger Hilbert
space onto H.

Or a singular integral transform: consider L2(I , dx), where I is a
closed interval on the line. Let a, b ∈ L∞(I ), with a = a, a.e.
Obviously the multiplication operator [Xφ](x) = xφ(x) is
self-adjoint on L2(I , dx). The operator

[Yφ](x) = a(x)φ(x)− b(x)

πi

∫
I

b(y)φ(y)

y − x
dy ,

is well defined as a principal value and bounded on L2, by the well
known continuity of the Hilbert transform.
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Then

[X,Y]φ(x) =
b(x)

πi

∫
I
b(y)φ(y)dy ,

hence T = X + iY is a hyponormal operator:

[T ∗,T ] = 2i [X,Y] ≥ 0.
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Main inequalities

Putnam:
π‖[T ∗,T ]‖ ≤ Area σ(T ).

Berger and Shaw:

Trace[T ∗,T ] ≤ m(T )

π
Area σ(T ),

where m(T ) stands for the rational multiplicity of T , that is the
minimal number of vectors hj , 1 ≤ j ≤ m(T ), so that f (T )hj span
the whole Hilbert space on which T acts, where f is an arbitrary
rational function, analytic in a neighborhood of σ(T ).
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Rank-one self commutator

[T ∗,T ] = ξ ⊗ ξ.
and T is irreducible, that is the linear span of vectors T nT ∗mξ,
n,m ≥ 0 is dense in H.
Then the multiplicative commutator

(T − z)(T ∗ − w)(T − z)−1(T ∗ − w)−1

is in the determinant class (that is the identity plus a trace-class
operator) and

det(T − z)(T ∗ − w)(T − z)−1(T ∗ − w)−1 =

det[I− (ξ ⊗ ξ)(T − z)−1(T ∗ − w)−1] =

1− 〈(T − z)−1(T ∗ − w)−1ξ, ξ〉 =

1− 〈(T ∗ − w)−1ξ, (T ∗ − z)−1ξ〉.
Hyponormal quantization UCSB-Newcastle U



Pincus Theorem

The integral representation

1− 〈(T ∗ − w)−1ξ, (T ∗ − z)−1ξ〉 = exp(
−1

π

∫
C

g(ζ)dA(ζ)

(ζ − z)(ζ − w)
),

establishes, for |z |, |w | >> 1, a one-to-one correspondence
between all irreducible hyponormal operators T with rank-one
self-commutator [T ∗,T ] = ξ ⊗ ξ and L1-classes of Borel
measurable functions g : C −→ [0, 1] of compact support.
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Principal function

The function g is called the principal function of the operator T ,
and it can be regarded as a generalized Fredholm index which is
defined even for points of the essential spectrum. Defined
whenever [T ∗,T ] is trace class.

In that case Helton and Howe Theorem states:

trace[p(T ,T ∗), q(T ,T ∗)] =
1

π

∫
C
J(p, q)g dA, p, q ∈ C[z , z ],

where J(p, q) stands for the Jacobian of the two smooth functions.

Dawn of cyclic cohomology.
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The exponential transform

Let g ∈ L1
comp(C, dA) have values in [0, 1]:

Eg (z ,w) = exp(
−1

π

∫
C

g(ζ)dA(ζ)

(ζ − z)(ζ − w)
)

originally defined for z ,w /∈ supp(g) has a series of defining
positivity properties encoded in the Hilbert space factorization:

Eg (z ,w) = 1− 〈(T ∗ − w)−1ξ, (T ∗ − z)−1ξ〉.

It extends separately as a continuous function over the support g ,
equal to the spectrum of T .
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Markov’s problem in 2D

The frame is the unit disk D, with test space filled by measurable
functions g : D −→ [0, 1]. We write the power moments in
complex coordinates:

sk`(g) =

∫
D
zkz`gdA, k , ` ≥ 0,

where dA stands for Lebesgue area measure on the disk D.

The formal generating series and its exponential transform are

exp[
−1

π

∞∑
k,`=0

sk`(g)

zk+1z`+1
] = 1−

∞∑
k,`=0

bk`(g)

zk+1z`+1
.

In particular the matrix (bk`(g))∞k,`=0 is positive semi-definite.
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Extremal solutions

det[bk`(g)]dk,`=0 = 0

for some positive integer d , if and only if the original shade
function g is the characteristic function of a quadrature domain Ω
contained in D.
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Quadrature domains

A quadrature domain is a bounded open set Ω ⊂ C satisfying a
Gaussian type quadrature∫

Ω
f (z)dA(z) = c1f (a1) + . . .+ cd f (ad),

valid for all complex analytic functions f which are integrable on
Ω. Above the nodes a1, . . . , ad belong to Ω and the weights
c1, . . . , cd are positive. Higher multiplicity nodes, that is
derivatives of f , are permitted in such an identity.
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A disk is a quadrature domain, in view of Gauss mean value
theorem.

A disjoint union of disks is a QD.

The conformal image of a disk by a rational function is also a
quadrature domain (such as a cardiodid or a lemniscate).
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Algebraic boundary

Any connected quadrature domain is a principal semi-algebraic set,
with an irreducible defining polynomial: Ω = {z ∈ C, Q(z , z) < 0}
(modulo a finite set), where

Q(z , z) = |Pd(z)|2−|Pd−1(z)|2−|Pd−2(z)|2−. . .−|P1(z)|2−|P0(z)|2,

with Pj ∈ C[z ], 0 ≤ j ≤ d , and degPj = j , 0 ≤ j ≤ d .

Quadrature domains are dense in Hausdorff metric among all
bounded open subsets of the complex plane.
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Rationality of exp transform

The degenerate situation det[bk`(g)]dk,`=0 = 0 is reflected in the
rationality of the exponential transform

Eg (z ,w) =
Q(z ,w)

Pd(z)Pd(w)
, |z |, |w | → ∞,

and vice-versa, provided the degeneracy degree d is chosen
minimal.

The nodes a1, . . . , ad of the mechanical quadrature are exactly the
zeros of the leading polynomial Pd(z).
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Accessible potential, hence effective reconstruction
algorithm

The exp transform of the characteristic function EG = EχG
shares

the features of a numerically accessible, defining potential:

I limz→∞ EG (z , z) = 1,

I EG (z , z) is superharmonic and positive on C \ G
I EG (z , z) ∼ dist(z , ∂G ), z → ∂G , z /∈ G ,

I EG (z , z) extends as a real analytic function acros analytic arcs
of ∂G .

For instance, in the case of a disk D(a, r) elementary computations
yield:

ED(a,r)(z , z) = 1− r2

|z − a|2
, |z − a| > r .
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Reconstruction of a disk

|z − c |2 ≤ M2, c ∈ C, M > 0,

The initial moments are:

a00 = πM2,

a01 =

∫
|z−c|≤M

zdA(z) = πMc = a10,

a11 =

∫
|z−c|≤M

|z |2dA(z) = 2π

∫ M

0
(|c |2+r2)rdr = πM2|c |2+π

M4

2
.
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Markov transform

The truncated exponential transforms is:

exp[−M2

zw
− M2c

zw2
− M2c

z2w
−

M2|c|2 + M4

2

z2w2
] =

1− M2

zw
− M2c

zw2
− M2c

z2w
− M2|c |2

z2w2
+ O(

1

w3
,

1

z3
).

We infer

b00 = M2, b10 = M2c, b01 = M2c , b11 = M2|c |2.
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Vanishing determinant b00b11 − b10b01 = 0 identifies the monic
factor P(z) = z − c as the denominator P(z)P(w) of the rational
approximant of the full exponential transform. Then

(z − c)(w − c)[1− M2

zw
− M2c

zw2
− M2c

z2w
− M2|c |2

z2w2
] =

(z − c)(w − c)−M2 + O(
1

z2
,

1

w2
).

Conclusion: the generating shape possessing moments
a00, a10, a01, a11 is necessarily black and white, defined by equation
|z − c |2 ≤ M2.
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Superresolution

Let ∆ = [−1, 1]n denote the cube in Rn endowed with Lebesgue
measure and fix a degree d ≥ 1.
Let p(X ) =

∑
|β|≤d pβX

β be a non-constant polynomial and let α
be an admissible multi-index with respect to p. Denote by χ the
characteristic function of the super-level set p(x) ≥ 0, x ∈ ∆.

Then

‖χ− g‖|α|+1
1 ≤ C |α|(1 + |α|)|

∑
pβ(sβ(χ)− sβ(g))|

for every measurable function g in the ball ‖χ− g‖1 ≤ |pα|
1/|α|

4d C ,
where the constant C depends only on n.
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Admissible indices

A multi-index α ∈ Nn admissible with respect to p, if pα 6= 0 and
there exists a permutation (σ(1), σ(2), . . . , σ(n)) of (1, 2, . . . , n)
such that for every β with pβ 6= 0, either ασ(1) > βσ(1), or there
exists an index j , j ≥ 2, satisfying ασ(j) > βσ(j) and ασ(k) = βσ(k)

for 1 ≤ k ≤ j − 1.

It is easy to see that every polynomial admits at least one
admissible multi-index.
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Ingredient in the proof

Denote ∆r = [−r , r ]n for r > 0 and

Vδ(p) = {x ∈ Rn, |p(x)| < δ}.

Theorem. (Dieu-2018) Let p ∈ R[x ] be a polynomial of degree d
and let α ∈ Nn be an admissible multi-index for p. There is a
constant C ′ depending only on n, such that for every δ > 0 and
r > 0 one has

vol(Vδ(p) ∩∆r ) ≤ C ′[
4d

|pα|1/|α|
δ1/|α|rn−1 + (

4d

|pα|1/|α|
δ1/|α|)n].
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General framework
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D. H. Phong, E. M. Stein, and Jacob Sturm. Multilinear level set
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Second ingredient in the proof

More convexity and duality:

A. S. Lewis. Superresolution in the Markov moment problem. J.
Math. Anal. Appl., 197(3):774–780, 1996.

Treating exclusively measures on [0, 1].
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Equivalent statement

Having the moment space RN (containing s(g) = (sα(g))|α|≤d)
endowed with a norm ‖ · ‖:

‖χ− g‖1 ≤ K‖s(χ)− s(g)‖
1

|α|+1 ,

with a constant K depending on the polynomial p, the admissible
multi-index α and n.
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2D

Let Ω ⊂ D be a quadrature domain of order d , with characteristic
function χ and defining polynomial equation Q(z , z) < 0,
assuming the leading polynomial Pd monic. The highest order
term of Q(z , z) is |z |2d , hence the multi-index (2d , 0) is admissible
for Q, with coefficient equal to 1.

Theorem. Let g : D −→ [0, 1] be a measurable function. Then

‖χ− g‖1,D ≤ e1/eC |[
d∑

j=0

|‖Pj‖2
2,Ω − ‖Pj‖2

2,gdA|]
1

2d+1 ,

provided ‖χ− g‖1 ≤ C
4d , where C is a universal constant.
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Padé type approximation

Let E (z ,w) = 1−
∑∞

k,`=0
bk`

zk+1w`+1 be the exponential transform of
a measurable function of compact support g , 0 ≤ g ≤ 1, attached
to the hyponormal operator T . Fix a positive integer N.
There exists a unique formal series

E(z ,w) = 1−
∞∑

k,`=0

ck`

zk+1w `+1

with the matching property

ck` = bk` for (0 ≤ k ≤ N−1, 0 ≤ ` ≤ N) or (0 ≤ k ≤ N, 0 ≤ ` ≤ N−1)

and positivity and rank constraints

(ck`)
∞
k,`=0 ≥ 0, rank(ck`)

∞
k,`=0 ≤ min(N, n)

where n = rank(bk`)
N
k,`=0.
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In this case

E(z ,w) = EN(z ,w) = 1− 〈(T ∗N − w)−1ξ, (T ∗N − z)−1ξ〉

where TN the finite central truncation of the operator T to the
linear subspace generated by the vectors ξ,T ∗ξ, . . . ,T ∗(N−1)ξ.
Moreover,

EN(z ,w) =
QN(z ,w)

PN(z)PN(w)
,

where PN is the associated orthogonal polynomial, whenever it is
unambiguously defined, and the polynomial kernel QN(z ,w) is
positive semi-definite and has degree at most N − 1 in each
variable.
In addition, E(z ,w) = E (z ,w) as formal series if and only if the
function g is the characteristic function of a quadrature domain of
order d ≤ N.

Hyponormal quantization UCSB-Newcastle U



One line formula

If Ω = {z ∈ C;Q(z , z) < 0} is a quadrature domain, with nodes at
the zeros of the polynomial P(z), then

Q(z ,w)

P(z)P(w)
= exp(

−1

π

∫
Q(ζ,ζ)<0

dA(ζ)

(ζ − z)(ζ − w)
),

for |z |, |w | >> 1.
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Three term relation

The exponential orthogonal polynomials PN(z) appearing in the
approximation scheme satisfy a three term relation if and only if
g = χE , where E is an ellipse.
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Two point quadrature domains

The quadrature ∫
Ω
fdA = πr2(f (−1) + f (1))

valid for all entire functions f (z) has the exponential transform

EΩ(z ,w) =
z2w2 − z2 − w2 − 2r2zw

(z2 − 1)(w2 − 1)
.
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A double point

The quadrature ∫
Ω
fdA = 6πf (−1)− 4πf ′(−1)

has a unique representing domain, of exponential transform

EΩ(z ,w) =
z2w2 + 2zw2 + 2z2w + z2 + w2 − 2zw

(z − 1)2(w − 1)2
.
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The two block-diagonal matrix model

Ω ⊂ C is a quadrature domain with T its hyponormal
quantization: [T ∗,T ] = ξ〈·, ξ〉 and principal function equal to the
characteristic function of Ω.

In this case the T ∗- cyclic subspace H0 = span{T ∗kξ, k ≥ 0} is
finite dimensional. The minimal polynomial of the restriction
D0 = T |ast|H0 coincides with the monic polynomial P(z) of degree
d vanishing at the quadrature nodes.

The subspaces

Hk = span{T jx , 0 ≤ j ≤ k, x ∈ H0}

have exact dimension

dimHk = (k + 1)d , k ≥ 0.
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The staircase

The entire space H can be decomposed into an orthogonal direct
sum:

H = H0 ⊕ [H1 	 H0]⊕ [H2 	 H1]⊕ . . . ,

and correspondingly one can write:

T =


D0 0 0 . . . . . .
A0 D1 0 . . .
0 A1 D2 0 . . .
0 0 A2 D3 . . .
...

. . .
. . .

 .

A convenient choice of orthogonal bases in each summand
Hk+1 	 Hk = Cd allows us to assume Ak > 0 for all k ≥ 0.
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Recurrence

The commutation relation [T ∗,T ] = ξ〈·, ξ〉 is equivalent to the
recurrent system of equations

[D∗k ,Dk ] + A2
k = A2

k−1, k ≥ 0; A−1 = ξ〈·, ξ〉,

AkDk+1 = DkAk , k ≥ 0.

Note that trace A2
k = trace A2

k−1, k ≥ 0, hence

trace A2
k = ‖ξ‖2 =

Area(Ω)

π
,

that is the off diagonal entries in are uniformly bounded in norm.

The boundedness of the entire operator T is equivalent to
supk ‖Dk‖ <∞.
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Further applications

Matrix model in Laplacian Growth

Regularity of free boundaries

Spectral analysis: separation of the ”cloud” in Thomson’s
Theorem

Asymptotics of the exponential orthogonal polynomials

Packing quadrature domains

Truncated moment problem in 2D
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