Bilinear Bochner-Riesz operator for convex domains

Surjeet Singh Choudhary IISER Mohali

Joint work with Saurabh Shrivastava and Ankit Bhojak (IISER Bhopal)

APRG Seminar, IISc Begaluru 03 October 2024

[Introduction](#page-1-0)

• Let $\alpha \geq 0$ and $n \geq 1$,

$$
B_R^{\alpha}(f)(x) = \int_{\mathbb{R}^n} \left(1 - \frac{|\xi|^2}{R^2}\right)_+^{\alpha} \hat{f}(\xi) e^{2\pi ix \cdot \xi} d\xi.
$$

• Let $\alpha \geq 0$ and $n \geq 1$,

$$
B_R^{\alpha}(f)(x) = \int_{\mathbb{R}^n} \left(1 - \frac{|\xi|^2}{R^2}\right)_+^{\alpha} \hat{f}(\xi) e^{2\pi ix \cdot \xi} d\xi.
$$

$$
\cdot \ \left(1 - \frac{|\xi|^2}{R^2}\right)_+ = \begin{cases} 1 - \frac{|\xi|^2}{R^2} & |\xi| \le R, \\ 0 & |\xi| > R. \end{cases}
$$

• Let $\alpha \geq 0$ and $n \geq 1$,

$$
B_R^{\alpha}(f)(x) = \int_{\mathbb{R}^n} \left(1 - \frac{|\xi|^2}{R^2}\right)_+^{\alpha} \widehat{f}(\xi) e^{2\pi ix \cdot \xi} d\xi.
$$

$$
\cdot \left(1 - \frac{|\xi|^2}{R^2}\right)_+ = \begin{cases} 1 - \frac{|\xi|^2}{R^2} & |\xi| \le R, \\ 0 & |\xi| > R. \end{cases}
$$

• We can also write

$$
B_R^{\alpha}(f)(x) = K_R^{\alpha} * f(x).
$$

$$
\cdot K_R^{\alpha}(x) = c_{n,\alpha} R^n \frac{\mathcal{I}_{\frac{n}{2}+\alpha}(2\pi R|x|)}{(R|x|)^{\frac{n}{2}+\alpha}}.
$$

• Let $\alpha \geq 0$ and $n \geq 1$,

$$
B_R^{\alpha}(f)(x) = \int_{\mathbb{R}^n} \left(1 - \frac{|\xi|^2}{R^2}\right)_+^{\alpha} \widehat{f}(\xi) e^{2\pi ix \cdot \xi} d\xi.
$$

$$
\cdot \left(1 - \frac{|\xi|^2}{R^2}\right)_+ = \begin{cases} 1 - \frac{|\xi|^2}{R^2} & |\xi| \le R, \\ 0 & |\xi| > R. \end{cases}
$$

• We can also write

$$
B^{\alpha}_R(f)(x)=K^{\alpha}_R*f(x).
$$

$$
\cdot K_R^{\alpha}(x) = c_{n,\alpha} R^n \frac{\mathcal{I}_{\frac{n}{2}+\alpha}(2\pi R|x|)}{(R|x|)^{\frac{n}{2}+\alpha}}.
$$

• When $R = 1$, we write $B_R^{\alpha} = B^{\alpha}$.

Question

When does $B_R^{\alpha} f(x) \to f(x)$ *as* $R \to \infty$?

Question

When does $B_R^{\alpha} f(x) \to f(x)$ *as* $R \to \infty$?

• For $\alpha > \frac{n-1}{2}$, K_R^{α} is an integrable kernel.

Question

When does $B_R^{\alpha} f(x) \to f(x)$ *as* $R \to \infty$?

- For $\alpha > \frac{n-1}{2}$, K_R^{α} is an integrable kernel.
- \cdot (Fefferman) If $\alpha = 0$ and $n \geq 2$, $B^0: L^p(\mathbb R^n) \to L^p(\mathbb R^n)$ if and only if $p = 2$.

Question

When does $B_R^{\alpha} f(x) \to f(x)$ *as* $R \to \infty$?

- For $\alpha > \frac{n-1}{2}$, K_R^{α} is an integrable kernel.
- \cdot (Fefferman) If $\alpha = 0$ and $n \geq 2$, $B^0: L^p(\mathbb R^n) \to L^p(\mathbb R^n)$ if and only if $p = 2$.

• Let
$$
\alpha(p) = \max \left\{ 0, n \left| \frac{1}{p} - \frac{1}{2} \right| - \frac{1}{2} \right\}.
$$

Question

When does $B_R^{\alpha} f(x) \to f(x)$ *as* $R \to \infty$?

- For $\alpha > \frac{n-1}{2}$, K_R^{α} is an integrable kernel.
- \cdot (Fefferman) If $\alpha = 0$ and $n \geq 2$, $B^0: L^p(\mathbb R^n) \to L^p(\mathbb R^n)$ if and only if $p = 2$.

• Let
$$
\alpha(p) = \max \left\{ 0, n \left| \frac{1}{p} - \frac{1}{2} \right| - \frac{1}{2} \right\}.
$$

Theorem (Bochner-Riesz conjecture)

B^{α} is bounded from $L^p(\mathbb{R}^n)$ into $L^p(\mathbb{R}^n)$ if and only if $\alpha > \alpha(p)$ *.*

 \cdot Let $\alpha \geq 0$ and $n \geq 1$, the bilinear Bochner-Riesz operator is defined by

$$
\mathcal{B}_R^{\alpha}(f,g)(x)=\int_{\mathbb{R}^n}\int_{\mathbb{R}^n}\left(1-\frac{|\xi|^2+|\eta|^2}{R^2}\right)_+^{\alpha}\widehat{f}(\xi)\widehat{g}(\eta)\,e^{2\pi ix\cdot(\xi+\eta)}\,d\xi\,d\eta.
$$

• Let $\alpha \geq 0$ and $n \geq 1$, the bilinear Bochner-Riesz operator is defined by

$$
\mathcal{B}_R^{\alpha}(f,g)(x)=\int_{\mathbb{R}^n}\int_{\mathbb{R}^n}\left(1-\frac{|\xi|^2+|\eta|^2}{R^2}\right)_+^{\alpha}\widehat{f}(\xi)\widehat{g}(\eta)\,e^{2\pi ix\cdot(\xi+\eta)}\,d\xi\,d\eta.
$$

• We can write

$$
\mathcal{B}_R^{\alpha}(f,g)(x) = K_R^{\alpha} * (f \otimes g)(x,x),
$$

where $(f \otimes g)(x, y) = f(x)g(y)$.

• Let $\alpha \geq 0$ and $n \geq 1$, the bilinear Bochner-Riesz operator is defined by

$$
\mathcal{B}_R^\alpha(f,g)(x)=\int_{\mathbb{R}^n}\int_{\mathbb{R}^n}\left(1-\frac{|\xi|^2+|\eta|^2}{R^2}\right)_+^\alpha\widehat{f}(\xi)\widehat{g}(\eta)\,e^{2\pi ix\cdot(\xi+\eta)}\,d\xi\,d\eta.
$$

• We can write

$$
\mathcal{B}_R^{\alpha}(f,g)(x) = K_R^{\alpha} * (f \otimes g)(x,x),
$$

where $(f \otimes g)(x, y) = f(x)g(y)$.

$$
\cdot K_R^{\alpha}(y, z) = c_{n, \alpha} R^{2n} \frac{\mathcal{J}_{\alpha+n}(2\pi R|(y, z)|)}{|R(y, z)|^{\alpha + n}}, \quad y, z \in \mathbb{R}^n.
$$

 \cdot Let α > 0 and n > 1, the bilinear Bochner-Riesz operator is defined by

$$
\mathcal{B}_R^{\alpha}(f,g)(x)=\int_{\mathbb{R}^n}\int_{\mathbb{R}^n}\left(1-\frac{|\xi|^2+|\eta|^2}{R^2}\right)_+^{\alpha}\widehat{f}(\xi)\widehat{g}(\eta)e^{2\pi ix\cdot(\xi+\eta)}\,d\xi\,d\eta.
$$

• We can write

$$
\mathcal{B}_R^{\alpha}(f,g)(x) = K_R^{\alpha} * (f \otimes g)(x,x),
$$

where $(f \otimes q)(x, y) = f(x)q(y)$.

- $\cdot K_R^{\alpha}(y, z) = c_{n, \alpha} R^{2n} \frac{\mathcal{J}_{\alpha+n}(2\pi R|(y, z)|)}{|R(y, z)|^{\alpha+n}}, \ \ y, z \in \mathbb{R}^n.$
- When $R = 1$, we denote \mathcal{B}_R^{α} by \mathcal{B}^{α} .

• We have the kernel estimate

$$
|K^{\alpha}(y,z)| \leq \frac{1}{(1+|y|)^{\frac{n+\alpha+\frac{1}{2}}{2}}} \frac{1}{(1+|z|)^{\frac{n+\alpha+\frac{1}{2}}{2}}}.
$$

• We have the kernel estimate

$$
|K^{\alpha}(y, z)| \leq \frac{1}{(1+|y|)^{\frac{n+\alpha+\frac{1}{2}}{2}}} \frac{1}{(1+|z|)^{\frac{n+\alpha+\frac{1}{2}}{2}}}.
$$

• Thus, for
$$
\alpha > n - \frac{1}{2}
$$
, we have

 $\mathcal{B}^{\alpha}: L^{p_1}(\mathbb{R}^n) \times L^{p_2}(\mathbb{R}^n) \to L^p(\mathbb{R}^n)$,

whenever $1\leq p_1,p_2\leq\infty$ satisfying Hölder relation $\frac{1}{p_1}+\frac{1}{p_2}=\frac{1}{p}.$

When $\alpha = 0$, the bilinear Bochner-Riesz operator is known as the bilinear ball multiplier.

When $\alpha = 0$, the bilinear Bochner-Riesz operator is known as the bilinear ball multiplier.

• Grafakos and Li (Amer. J. Math., 2006) When $n = 1$, $\mathcal{B}^0: L^{p_1}(\mathbb{R}) \times L^{p_2}(\mathbb{R}) \to L^p(\mathbb{R})$ for $2 \leq p_1, p_2 < \infty$ and $1 < p < 2$.

When $\alpha = 0$, the bilinear Bochner-Riesz operator is known as the bilinear ball multiplier.

- Grafakos and Li (Amer. J. Math., 2006) When $n = 1$, $\mathcal{B}^0: L^{p_1}(\mathbb{R}) \times L^{p_2}(\mathbb{R}) \to L^p(\mathbb{R})$ for $2 \leq p_1, p_2 < \infty$ and $1 < p < 2$.
- Diestel and Grafakos (Nagoya Math. J., 2007) When $n\geq 2$, \mathcal{B}^0 is not bounded if exactly one of $p_1,p_2,$ or p' less than 2.

Some results on $L^{p_1} \times L^{p_2} \to L^p$ -boundedness of bilinear Bochner-Riesz operator for $p \geq 1$ were first given by F. Bernicot et al. (J. Anal. Math.,2015)

Jeong, Lee and Vargas (Math. Ann., 2018) improved the range of exponent α when $p_1, p_2 \geq 2$.

Liu and Wang (Proc. Amer. Math. Soc., 2020) extended the boundedness results in the non-Banach triangle (i.e. *p <* 1).

Kaur and Shrivastava (Adv. Math., 2022) obtained boundedness in non-Banach range in dimension $n = 1$.

[Bilinear Bochner-Riesz means for](#page-24-0) [convex domain in the plane](#page-24-0)

• Let $(0,0) \in \Omega$ be an open and bounded convex set in the plane R ² and *∂*Ω denote the boundary of Ω.

- Let $(0,0) \in \Omega$ be an open and bounded convex set in the plane R ² and *∂*Ω denote the boundary of Ω.
- Consider the Minkowski functional associated with Ω given by,

 $\rho(\xi) = \inf\{t > 0 : t^{-1}\xi \in \partial\Omega\}.$

- Let $(0,0) \in \Omega$ be an open and bounded convex set in the plane R ² and *∂*Ω denote the boundary of Ω.
- Consider the Minkowski functional associated with Ω given by,

$$
\rho(\xi) = \inf\{t > 0 : t^{-1}\xi \in \partial\Omega\}.
$$

• The Bochner-Riesz mean of index *α >* 0 associated with the convex domain Ω is defined by

$$
B_{\Omega}^{\alpha}f(x) = \int_{\mathbb{R}^2} (1 - \rho(\xi))^{\alpha} \hat{f}(\xi) e^{2\pi ix \cdot \xi} d\xi.
$$

- Let $(0,0) \in \Omega$ be an open and bounded convex set in the plane R ² and *∂*Ω denote the boundary of Ω.
- Consider the Minkowski functional associated with Ω given by,

$$
\rho(\xi) = \inf\{t > 0 : t^{-1}\xi \in \partial\Omega\}.
$$

• The Bochner-Riesz mean of index *α >* 0 associated with the convex domain Ω is defined by

$$
B_{\Omega}^{\alpha}f(x) = \int_{\mathbb{R}^2} (1 - \rho(\xi))^{\alpha} \widehat{f}(\xi) e^{2\pi ix \cdot \xi} d\xi.
$$

 \cdot Sjölin and Hörmander studied the Bochner-Riesz means when Ω has a smooth boundary in the plane.

- Let $(0,0) \in \Omega$ be an open and bounded convex set in the plane R ² and *∂*Ω denote the boundary of Ω.
- Consider the Minkowski functional associated with Ω given by,

$$
\rho(\xi) = \inf\{t > 0 : t^{-1}\xi \in \partial\Omega\}.
$$

• The Bochner-Riesz mean of index *α >* 0 associated with the convex domain Ω is defined by

$$
B_{\Omega}^{\alpha}f(x) = \int_{\mathbb{R}^2} (1 - \rho(\xi))^{\alpha} \widehat{f}(\xi) e^{2\pi ix \cdot \xi} d\xi.
$$

- \cdot Sjölin and Hörmander studied the Bochner-Riesz means when Ω has a smooth boundary in the plane.
- Seeger and Ziesler extended the study to open and bounded convex domains in the plane.

• The bilinear Bochner-Riesz mean of index $\alpha \geq 0$ associated with the convex domain Ω is defined by

$$
\mathcal{B}_{\Omega}^{\alpha}(f,g)(x) = \int_{\mathbb{R}} \int_{\mathbb{R}} (1 - \rho(\xi,\eta))^{\alpha} \widehat{f}(\xi) \widehat{g}(\eta) e^{2\pi i x(\xi+\eta)} d\xi d\eta.
$$

• The bilinear Bochner-Riesz mean of index $\alpha > 0$ associated with the convex domain Ω is defined by

$$
\mathcal{B}_{\Omega}^{\alpha}(f,g)(x) = \int_{\mathbb{R}} \int_{\mathbb{R}} (1 - \rho(\xi,\eta))^{\alpha} \widehat{f}(\xi) \widehat{g}(\eta) e^{2\pi i x(\xi+\eta)} d\xi d\eta.
$$

 \cdot Ω = graph of convex functions with bounded slopes, Muscalu proved $L^{p_1}(\mathbb{R}) \times L^{p_2}(\mathbb{R}) \to L^p(\mathbb{R})$ -boundedness in Local *L* ²*−*range.

• The bilinear Bochner-Riesz mean of index $\alpha > 0$ associated with the convex domain Ω is defined by

$$
\mathcal{B}_{\Omega}^{\alpha}(f,g)(x) = \int_{\mathbb{R}} \int_{\mathbb{R}} (1 - \rho(\xi,\eta))^{\alpha} \widehat{f}(\xi) \widehat{g}(\eta) e^{2\pi i x(\xi+\eta)} d\xi d\eta.
$$

- \cdot Ω = graph of convex functions with bounded slopes, Muscalu proved $L^{p_1}(\mathbb{R}) \times L^{p_2}(\mathbb{R}) \to L^p(\mathbb{R})$ -boundedness in Local *L* ²*−*range.
- $\cdot \Omega =$ infinite lacunary polygon, Demeter and Gautam proved $L^{p_1}(\mathbb{R}) \times L^{p_2}(\mathbb{R}) \to L^p(\mathbb{R})$ boundedness for $1 < p_1, p < 2$ and $2 < p_2 < \infty$.

• The bilinear Bochner-Riesz mean of index $\alpha > 0$ associated with the convex domain Ω is defined by

$$
\mathcal{B}_{\Omega}^{\alpha}(f,g)(x) = \int_{\mathbb{R}} \int_{\mathbb{R}} (1 - \rho(\xi,\eta))^{\alpha} \widehat{f}(\xi) \widehat{g}(\eta) e^{2\pi i x(\xi+\eta)} d\xi d\eta.
$$

- \cdot Ω = graph of convex functions with bounded slopes, Muscalu proved $L^{p_1}(\mathbb{R}) \times L^{p_2}(\mathbb{R}) \to L^p(\mathbb{R})$ -boundedness in Local *L* ²*−*range.
- $\cdot \Omega =$ infinite lacunary polygon, Demeter and Gautam proved $L^{p_1}(\mathbb{R}) \times L^{p_2}(\mathbb{R}) \to L^p(\mathbb{R})$ boundedness for $1 < p_1, p < 2$ and $2 < p_2 < \infty$.
- $\cdot \ \Omega = \{ (\xi, \eta) \in \mathbb{R}^2 : \ \xi \leq 0, 2^{\xi} \leq \eta < 1 \},\$ Saari and Thiele proved $L^{p_1}(\mathbb{R}) \times L^{p_2}(\mathbb{R}) \to L^p(\mathbb{R})$ -boundedness in Local *L* ²*−*range.

 \cdot If Ω has a smooth boundary in the plane, Bernicot and Germain proved $L^{p_1} \times L^{p_2} \to L^p$ – boundedness of $\mathcal{B}^{\alpha}_{\Omega}$ for $\alpha > 0$, when $p_1, p_2 \geq 2$.

- \cdot If Ω has a smooth boundary in the plane, Bernicot and Germain proved $L^{p_1} \times L^{p_2} \to L^p$ – boundedness of $\mathcal{B}^{\alpha}_{\Omega}$ for $\alpha > 0$, when $p_1, p_2 \geq 2$.
- Our result concerns open and bounded convex domains in the plane.

Theorem (A. Bhojak, , S. Shrivastava; to appear Math. Ann.) Let $\alpha > 0$ and $p_1, p_2 \geq 2$ with $\frac{1}{p_1} + \frac{1}{p_2} = \frac{1}{p}$. Then $\mathcal{B}^{\alpha}_\Omega$ maps $L^{p_1}(\mathbb{R}) \times L^{p_2}(\mathbb{R})$ *into* $L^p(\mathbb{R})$ *, i.e., there exists a constant* $C = C(\Omega, \alpha, p_1, p_2) > 0$ *such that*

 $||B_{\Omega}^{\alpha}(f, g)||_p \leq C||f||_{p_1}||g||_{p_2}, \quad f, g \in \mathcal{S}(\mathbb{R}).$

$$
B(0,4) \subset \Omega \subset \overline{\Omega} \subset B(0,2^M),
$$

where $M \geq 3$ is a fixed constant.

$$
B(0,4) \subset \Omega \subset \overline{\Omega} \subset B(0,2^M),
$$

where $M > 3$ is a fixed constant.

 \cdot We approximate the convex domain Ω with convex domains Ω_n having a smooth boundary.

```
B(0,4) \subset \Omega \subset \overline{\Omega} \subset B(0,2^M),
```
where $M > 3$ is a fixed constant.

- We approximate the convex domain Ω with convex domains Ω_n having a smooth boundary.
- It is enough to prove *L ^p−*estimates for Bochner-Riesz means associated with Ω*ⁿ* uniform in *n*.

```
B(0,4) \subset \Omega \subset \overline{\Omega} \subset B(0,2^M),
```
where $M > 3$ is a fixed constant.

- We approximate the convex domain Ω with convex domains Ω_n having a smooth boundary.
- It is enough to prove *L ^p−*estimates for Bochner-Riesz means associated with Ω*ⁿ* uniform in *n*.
- We also assume that no portion of the boundary *∂*Ω is parallel to the coordinates axes.

 \cdot Let $\phi \in C_c^{\infty}([-\frac{3}{4}, \frac{3}{4}])$ and $\psi \in C_c^{\infty}([\frac{1}{2}, 2])$, be such that

$$
\phi(t) + \sum_{l=1}^{\infty} \psi(2^l(1-t)) = 1, \text{ for all } t \in [0,1).
$$

 \cdot Let $\phi \in C_c^{\infty}([-\frac{3}{4}, \frac{3}{4}])$ and $\psi \in C_c^{\infty}([\frac{1}{2}, 2])$, be such that

$$
\phi(t) + \sum_{l=1}^{\infty} \psi(2^l(1-t)) = 1, \text{ for all } t \in [0,1).
$$

• We have the following decomposition of the multiplier.

$$
(1 - \rho(\xi, \eta))^{\alpha}_{+}
$$

= $\phi(\rho(\xi, \eta))(1 - \rho(\xi, \eta))^{\alpha}_{+} + \sum_{l=1}^{\infty} 2^{-\alpha l} \psi(2^{l} (1 - \rho(\xi, \eta)))(2^{l} (1 - \rho(\xi, \eta)))^{\alpha}_{+}$
= $m_0(\xi, \eta) + \sum_{l=1}^{\infty} 2^{-\alpha l} m_l(\xi, \eta).$

• We decompose each annular region into sectors and parameterize each sector.

- We decompose each annular region into sectors and parameterize each sector.
- \cdot Let $b_p \in C^\infty_c(\mathbb{R}^2)$ be a radial function supported in sector S_p such that $\sum^{2^{2M}}$ 2^{Ω} $\sum_{p=1} b_p(\xi, \eta) = 1$ for $(\xi, \eta) \neq (0, 0)$. Hence we have

$$
m_l = \sum_{p=1}^{2^{2M}} m_l b_p.
$$

- We decompose each annular region into sectors and parameterize each sector.
- \cdot Let $b_p \in C^\infty_c(\mathbb{R}^2)$ be a radial function supported in sector S_p such that $\sum^{2^{2M}} b_p(\xi, \eta) = 1$ for $(\xi, \eta) \neq (0, 0)$. Hence we have 2^{Ω} *p*=1

$$
m_l = \sum_{p=1}^{2^{2M}} m_l b_p.
$$

• In each sector, we further refine boundary decomposition depending on the curvature of the parametrized curve in each sector and obtain

$$
m_l(\xi, \eta) = \sum_{p=1}^{2^{2M}} \sum_{j,\nu} m_{l,p,j,\nu}(\xi, \eta),
$$

where $\nu=-2M-l,\ldots,2M+l,\quad j=1,\ldots,Q,$ and $Q\lesssim C_M 2^{\frac{l}{2}}.$

 \cdot Let $K_{l,p,j,\nu}=\mathcal{F}^{-1}(m_{l,p,j,\nu})$ and $A_k=B(0,2^k)\setminus B(0,2^{k-1}).$ We write

$$
K_{l,p,j,\nu} = \sum_{k=0}^{10l} K_{l,p,j,\nu} \chi_{A_k} + \sum_{k=10l+1}^{\infty} K_{l,p,j,\nu} \chi_{A_k}
$$

= $K_{l,p,j,\nu}^1 + K_{l,p,j,\nu}^2$.

 \cdot Let $K_{l,p,j,\nu}=\mathcal{F}^{-1}(m_{l,p,j,\nu})$ and $A_k=B(0,2^k)\setminus B(0,2^{k-1}).$ We write

$$
K_{l,p,j,\nu} = \sum_{k=0}^{10l} K_{l,p,j,\nu} \chi_{A_k} + \sum_{k=10l+1}^{\infty} K_{l,p,j,\nu} \chi_{A_k}
$$

= $K_{l,p,j,\nu}^1 + K_{l,p,j,\nu}^2$.

$$
\cdot \|K_{l,p,j,\nu}^2\|_1 \lesssim 2^{-3l}.
$$

 \cdot Let $K_{l,p,j,\nu}=\mathcal{F}^{-1}(m_{l,p,j,\nu})$ and $A_k=B(0,2^k)\setminus B(0,2^{k-1}).$ We write

$$
K_{l,p,j,\nu} = \sum_{k=0}^{10l} K_{l,p,j,\nu} \chi_{A_k} + \sum_{k=10l+1}^{\infty} K_{l,p,j,\nu} \chi_{A_k}
$$

= $K_{l,p,j,\nu}^1 + K_{l,p,j,\nu}^2$.

$$
\cdot \ \Vert K_{l,p,j,\nu}^2\Vert_1 \lesssim 2^{-3l}.
$$

•

$$
\left\| \sum_{l=1}^{\infty} 2^{-\lambda l} \sum_{p=1}^{2^{2M}} \sum_{j,\nu} K_{l,p,j,\nu}^2 \right\|_1 \lesssim \sum_{l=1}^{\infty} 2^{-(\lambda+3)l} lQ
$$

$$
\lesssim \sum_{l=1}^{\infty} 2^{-(\lambda+3-\frac{1}{2})l} l \lesssim 1.
$$

 \cdot Let $P^1_{l,p,j,\nu}$ and $P^2_{l,p,j,\nu}$ be the projection of the support of the multiplier $m_{l,p,j,\nu}$ onto ξ -axis and η -axis respectively.

$$
K_{l,p,j,\nu}^{1} * (f,g)(x,x) = K_{l,p,j,\nu}^{1} * (f_{l,p,j,\nu}, g_{l,p,j,\nu})(x,x),
$$

where $\hat{f}_{l,p,j,\nu} = \chi_{P_{l,p,j,\nu}^{1}} \hat{f}$ and $\hat{g}_{l,p,j,\nu} = \chi_{P_{l,p,j,\nu}^{2}} \hat{g}$.

 \cdot Let $P^1_{l,p,j,\nu}$ and $P^2_{l,p,j,\nu}$ be the projection of the support of the multiplier $m_{l,n,i,\nu}$ onto ξ -axis and η -axis respectively.

$$
K_{l,p,j,\nu}^{1} * (f,g)(x,x) = K_{l,p,j,\nu}^{1} * (f_{l,p,j,\nu}, g_{l,p,j,\nu})(x,x),
$$

where $\hat{f}_{l,p,j,\nu} = \chi_{P_{l,p,j,\nu}^{1}} \hat{f}$ and $\hat{g}_{l,p,j,\nu} = \chi_{P_{l,p,j,\nu}^{2}} \hat{g}$.

• We have the following estimate

$$
K^1_{l,p,j,\nu} * (f,g)(x,x) \lesssim l\mathcal{M}_{2^{30l}}(Mf_{l,p,j,\nu}, Mg_{l,p,j,\nu}),
$$

where M is the Hardy-Littlewood maximal function and $\mathcal{M}_{2^{30l}}$ is the bilinear Kakeya maximal function.

$$
\left\| \sum_{l=1}^{\infty} 2^{-\lambda l} \sum_{p=1}^{2^{2M}} \sum_{j,\nu} K_{l,p,j,\nu}^{1} * (f_{l,p,j,\nu}, g_{l,p,j,\nu}) \right\|_{p} \leq \sum_{l=1}^{\infty} 2^{-\lambda l} \sum_{p=1}^{2^{2M}} \left\| \sum_{j,\nu} \mathcal{M}_{2^{30l}}(Mf_{l,p,j,\nu}, Mg_{l,p,j,\nu}) \right\|_{p}.
$$

$$
\left\| \sum_{l=1}^{\infty} 2^{-\lambda l} \sum_{p=1}^{2^{2M}} \sum_{j,\nu} K_{l,p,j,\nu}^{1} * (f_{l,p,j,\nu}, g_{l,p,j,\nu}) \right\|_{p} \leq \sum_{l=1}^{\infty} 2^{-\lambda l} \sum_{p=1}^{2^{2M}} \left\| \sum_{j,\nu} \mathcal{U}_{2^{30l}}(M_{l,p,j,\nu}, Mg_{l,p,j,\nu}) \right\|_{p}
$$

Using the vector valued boundedness of bilinear Kakeya maximal function and that of Hardy-Littlewood maximal function, the above term can be dominated by

$$
\sum_{l=1}^{\infty} 2^{-\frac{\lambda l}{2}} l^2 \sum_{p=1}^{2^{2M}} \left\| \left(\sum_{j,\nu} |Mf_{l,p,j,\nu}|^2 \right)^{\frac{1}{2}} \right\|_{p_1} \left\| \left(\sum_{j,\nu} |Mg_{l,p,j,\nu}|^2 \right)^{\frac{1}{2}} \right\|_{p_2}
$$

$$
\lesssim \sum_{l=1}^{\infty} 2^{-\frac{\lambda l}{2}} l^2 \sum_{p=1}^{2^{2M}} \left\| \left(\sum_{j,\nu} |f_{l,p,j,\nu}|^2 \right)^{\frac{1}{2}} \right\|_{p_1} \left\| \left(\sum_{j,\nu} |g_{l,p,j,\nu}|^2 \right)^{\frac{1}{2}} \right\|_{p_2} \lesssim ||f||_{p_1} ||g||_{p_2}.
$$

.

[Bilinear Kakeya maximal function](#page-52-0)

Let $\mathfrak F$ be a collection of finite measure sets in $\mathbb R^n$. Consider the maximal averaging operator associated with the collection $\mathfrak F$ defined by

$$
M_{\mathfrak{F}}f(x) = \sup_{F \in \mathfrak{F}: x \in F} \frac{1}{|F|} \int_F |f(y)| dy.
$$

Let $\mathfrak F$ be a collection of finite measure sets in $\mathbb R^n$. Consider the maximal averaging operator associated with the collection $\mathfrak F$ defined by

$$
M_{\mathfrak{F}}f(x) = \sup_{F \in \mathfrak{F}: x \in F} \frac{1}{|F|} \int_F |f(y)| dy.
$$

 \cdot If $\mathfrak F$ is the collection of cubes (or balls) in $\mathbb R^n$, then $M_{\mathfrak F}$ (Hardy-Littlewood maximal operator), maps $L^p(\mathbb{R}^n)$ into itself for all $1 < p < \infty$ with a weak-type boundedness at $p = 1$.

Let $\mathfrak F$ be a collection of finite measure sets in $\mathbb R^n$. Consider the maximal averaging operator associated with the collection $\mathfrak F$ defined by

$$
M_{\mathfrak{F}}f(x) = \sup_{F \in \mathfrak{F}: x \in F} \frac{1}{|F|} \int_F |f(y)| dy.
$$

- \cdot If $\mathfrak F$ is the collection of cubes (or balls) in $\mathbb R^n$, then $M_{\mathfrak F}$ (Hardy-Littlewood maximal operator), maps $L^p(\mathbb{R}^n)$ into itself for all $1 < p < \infty$ with a weak-type boundedness at $p = 1$.
- \cdot If $\mathfrak F$ is the collection of all rectangles in $\mathbb R^n$, then by a well-known Besicovitch set construction, it is known that the corresponding operator $M_{\mathfrak{F}}$ fails to be L^p −bounded for all $1 \leq p < \infty$ *.*

For an integer $N > 1$ and $\delta > 0$, let $\mathcal{R}_{\delta,N}$ be the class of all rectangles δ \times *δN* and \mathcal{R}_N $=$ $\cup_{\delta>0}$ $\mathcal{R}_{\delta,N}$.

For an integer $N > 1$ and $\delta > 0$, let $\mathcal{R}_{\delta,N}$ be the class of all rectangles δ \times *δN* and \mathcal{R}_N $=$ $\cup_{\delta>0}$ $\mathcal{R}_{\delta,N}$.

• Córdoba proved that

$$
||M_{\mathcal{R}_{1,N}}||_{L^{2}\to L^{2}} \lesssim (\log N)^{\frac{1}{2}},
$$

and the logarithmic dependence on the "eccentricity" *N* is sharp.

For an integer $N > 1$ and $\delta > 0$, let $\mathcal{R}_{\delta,N}$ be the class of all rectangles δ \times *δN* and \mathcal{R}_N $=$ $\cup_{\delta>0}$ $\mathcal{R}_{\delta,N}$.

• Córdoba proved that

$$
||M_{\mathcal{R}_{1,N}}||_{L^{2}\to L^{2}} \lesssim (\log N)^{\frac{1}{2}},
$$

and the logarithmic dependence on the "eccentricity" *N* is sharp.

• Strömberg proved the following sharp bounds for the maximal operator $M_{\mathcal{R}_N}$.

 $||M_{\mathcal{R}_N}||_{L^2\to L^2}$ ≤ log *N.*

• The bilinear Kakeya maximal function associated with the collection \mathcal{R}_N is defined by

$$
\mathcal{M}_{\mathcal{R}_N}(f,g)(x) = \sup_{k \leq N} \sup_{\substack{R \in \mathcal{R}_k \\ (x,x) \in R}} \frac{1}{|R|} \int_R |f(y_1)| |g(y_2)| dy_1 dy_2.
$$

• The bilinear Kakeya maximal function associated with the collection \mathcal{R}_N is defined by

$$
\mathcal{M}_{\mathcal{R}_N}(f,g)(x) = \sup_{k \leq N} \sup_{\substack{R \in \mathcal{R}_k \\ (x,x) \in R}} \frac{1}{|R|} \int_R |f(y_1)| |g(y_2)| dy_1 dy_2.
$$

 \cdot We can see that the bilinear Kakeya maximal function $\mathcal{M}_{\mathcal{R}_N}(f,g)$ can be obtained by restricting the (linear) two-dimensional Kakeya maximal function $M_{\mathcal{R}_N}(f \otimes g)$ to the diagonal $\{(x, x) : x \in \mathbb{R}\}.$

Theorem

Let $1 \leq p_1, p_2 \leq \infty$ and $\frac{1}{p} = \frac{1}{p_1} + \frac{1}{p_2}$. The following bounds hold.

1. Banach case:

- a) *If* $p > 1$, $\|\mathcal{M}_{\mathcal{R}_N}\|_{L^{p_1} \times L^{p_2} \to L^p} \lesssim 1$.
- b) *If* $p_3 = 1$, $\|\mathcal{M}_{\mathcal{R}_N}\|_{L^{p_1} \times L^{p_2} \to L^1} \lesssim \log N$. *Moreover, the bound* log *N is sharp.*

2. Non-Banach case:

- a) *For* $1 < p_1, p_2 \leq \infty$ and $\frac{1}{2} < p < 1$, we have $\|\mathcal{M}_{\mathcal{R}_N}\|_{L^{p_1}\times L^{p_2}\to L^p}\lesssim N^{\frac{1}{p}-1}.$
- b) End-point case: *If atleast one of* p_1 *or* p_2 *is* 1 *then* $\|\mathcal{M}_{\mathcal{R}_N}\|_{L^{p_1}\times L^{p_2}\to L^{p,\infty}}$ ≤ *N*.

Bilinear Kakeya maximal function

Theorem

Let $1 < p_1, p_2 < \infty$, $1 \le p < \infty$ and $1 < r_1, r_2 < \infty$, $1 \le r \le \infty$ satisfy $\frac{1}{p}=\frac{1}{p_1}+\frac{1}{p_2}$ and $\frac{1}{r}=\frac{1}{r_1}+\frac{1}{r_2}.$ Then for any $\epsilon>0,$ we have $\begin{array}{c} \hline \textbf{1} & \textbf{1} \\ \textbf{2} & \textbf{1} \\ \textbf{3} & \textbf{1} \\ \textbf{4} & \textbf{1} \\ \textbf{5} & \textbf{1} \\ \textbf{6} & \textbf{1} \\ \textbf{7} & \textbf{1} \\ \textbf{8} & \textbf{1} \\ \textbf{9} & \textbf{1} \\ \textbf{10} & \textbf{1} \\ \textbf{11} & \textbf{1} \\ \textbf{12} & \textbf{1} \\ \textbf{13} & \textbf{1} \\ \textbf{16} & \textbf{1} \\ \textbf{17} & \$ $\sqrt{ }$ $\left\| \mathcal{M}_{\mathcal{R}_N}\left(f_j, g_j \right) \right|^r \right\|^{\frac{1}{r}} \Bigg\|_p$ $\lesssim N^{\epsilon}$ $\sqrt{ }$ *j* $\left|\left. f_j\right|^{r_1}\right)^{\frac{1}{r_1}}\right\|_{p_1}$ $\sqrt{ }$ *j* $\left| g_{j} \right|^{r_{2}} \Bigg) ^{\frac{1}{r_{2}}} \Bigg\|_{p_{2}}$

.

Brief idea of the proof for non-Banach case

• We observe that any rectangle $R \in \mathcal{R}_{\delta,N}$, we can dominate the bilinear average over *R* by a bilinear average over square with its side-length comparable to *δN* and containing *R*. This gives us

 $\mathcal{M}_{\mathcal{R}_{\delta,N}}(f,g)(x) \leq N \ M f(x) M g(x).$

Brief idea of the proof for non-Banach case

• We observe that any rectangle $R \in \mathcal{R}_{\delta,N}$, we can dominate the bilinear average over *R* by a bilinear average over square with its side-length comparable to *δN* and containing *R*. This gives us

 $\mathcal{M}_{\mathcal{R}_{\delta,N}}(f,g)(x) \leq N \ M f(x) M g(x).$

• Further, we have

$$
\frac{1}{|R|} \int\limits_{R} |f(x - y_1)| |g(x - y_2)| dy_1 dy_2 \lesssim M_s f(x) M_{s'} g(x), \quad 1 \le s \le \infty,
$$

where $M_s f(x) = (M(f^s)(x))^{\frac{1}{s}}, 1 \le s < \infty$ and $M_\infty f(x) = ||f||_\infty$.

Brief idea of the proof for non-Banach case

• We observe that any rectangle $R \in \mathcal{R}_{\delta,N}$, we can dominate the bilinear average over *R* by a bilinear average over square with its side-length comparable to *δN* and containing *R*. This gives us

 $\mathcal{M}_{\mathcal{R}_{\delta,N}}(f,g)(x) \leq N \ M f(x) M g(x).$

• Further, we have

$$
\frac{1}{|R|} \int\limits_{R} |f(x - y_1)| |g(x - y_2)| dy_1 dy_2 \lesssim M_s f(x) M_{s'} g(x), \quad 1 \le s \le \infty,
$$

where $M_s f(x) = (M(f^s)(x))^{\frac{1}{s}}, 1 \le s < \infty$ and $M_\infty f(x) = ||f||_\infty$.

 \cdot We get the boundedness in non-Banach range ($\frac{1}{2} < p_3 < 1$) with $\frac{1}{2}$ constant $N^{\frac{1}{p_3}-1}$ by interpolating weak-type estimates at points $(1, \infty, 1), (1, 1, \frac{1}{2})$ and $(\infty, 1, 1)$.

Brief idea of the proof for Banach case

Lemma

Let 1 *< s < ∞. Suppose T is a bi-sublinear operator satisfying*

*∥T∥Lp*1*×Lp*2*→Lp*3*,[∞]* ≲ *A,*

for the following Hölder indices (p_1, p_2, p_3) :

1. (∞, ∞, ∞) , (∞, s', s') , (s, ∞, s) , $(s, s', 1)$, $(\infty, \frac{3s'}{s'+2}, \frac{3s'}{s'+2})$, and $\left(\frac{3s}{s+2}, \infty, \frac{3s}{s+2}\right)$ with $A = 1$. 2. $\left(\frac{3s}{s+2}, \frac{3s'}{s'+2}, \frac{3}{4}\right)$ *with* $A = N^{\frac{1}{3}}$ *.* 3. $(s, \frac{3s'}{s'+2}, \frac{3s}{3s+1})$ *with* $A = N^{\frac{1}{3s}}$. 4. $\left(\frac{3s}{s+2}, s', \frac{3s'}{3s'+1}\right)$ with $A = N^{\frac{1}{3s'}}$.

Then, we have the following strong type estimate,

∣ $||T||$ _{*L*^{*s*}×*L*^{*s*}^{*/*}→*L*¹ ≤ log *N.*}

- 量 Bhojak, A.; Choudhary, S.S. and Shrivastava, S., *Bilinear Bochner-Riesz means for convex domains and Kakeya Maximal function. Math. Ann. (2024).*
- S. Bernicot F.; Grafakos L.; Song L. and Yan L., *The bilinear Bochner-Riesz problem, J. Anal. Math. 127 (2015), 179–217.*
- S. Jeong E.; Lee S. and Vergas A., *Improved bound for the bilinear Bochner-Riesz operator, Math. Ann. 372 (2018), no. 1-2, 581–609.*
- 螶 Jotsaroop K. and Shrivastava S., *Maximal estimates for bilinear Bochner-Riesz means,* Adv. Math. 395(2022), Paper No. 108100.

THANK YOU!