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- When R = 1, we write B} = B~.
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Bochner-Riesz Operator

Question
When does B%:f(z) — f(z) as R — oo?

- Fora > ”7*1 K% is an integrable kernel.

- (Fefferman) If « =0 and n > 2, B° : LP(R™) — LP(R™) if and only
ifp=2.

. _ 1 1] _ 1
Let a(p) = maX{O,n’; - 5‘ - 5}.

Theorem (Bochner-Riesz conjecture)
B“ is bounded from LP(R™) into LP(R™) if and only if o > a(p).
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- When R =1, we denote B¢ by B“.
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Bilinear Bochner-Riesz Operator

- We have the kernel estimate
1 1

[K% (3, 2)| <
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- Thus, for & > n— £, we have
B> [P(R") x LP*(R"™) — LP(R™),
1 _1

whenever 1 < py, py < oo satisfying Holder relation p% +o=
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Bilinear Bochner-Riesz Operator

When a = 0, the bilinear Bochner-Riesz operator is known as the
bilinear ball multiplier.

- Grafakos and Li (Amer. ). Math., 2006)
When n =1, B®: LP*(R) x LP2(R) — LP(R) for 2 < p;, p2 <
and 1 <p<2.

- Diestel and Grafakos (Nagoya Math. )., 2007)
When n > 2, BY is not bounded if exactly one of py, ps, or p’ less
than 2.



Bilinear Bochner-Riesz Operator

Some results on LP' x LP? — LP-boundedness of bilinear
Bochner-Riesz operator for p > 1 were first given by F. Bernicot et al.
(J. Anal. Math.,2015)
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Bilinear Bochner-Riesz Operator

Jeong, Lee and Vargas (Math. Ann., 2018) improved the range of
exponent a when py, po > 2.
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Bilinear Bochner-Riesz Operator

Liu and Wang (Proc. Amer. Math. Soc., 2020) extended the
boundedness results in the non-Banach triangle (i.e. p < 1).
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Bilinear Bochner-Riesz Operator

Kaur and Shrivastava (Adv. Math., 2022) obtained boundedness in
non-Banach range in dimension n = 1.
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- Consider the Minkowski functional associated with € given by,

p(€) =inf{t>0: t7'¢ € 9Q}.

- The Bochner-Riesz mean of index o > 0 associated with the
convex domain € is defined by

B f(z) = / (1— p(€))THE)E€ d.

R2
- Sjolin and Hormander studied the Bochner-Riesz means when
has a smooth boundary in the plane.

- Seeger and Ziesler extended the study to open and bounded
convex domains in the plane.
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- The bilinear Bochner-Riesz mean of index o« > 0 associated with
the convex domain Q is defined by

B2(/.9) / / plE,m)) S REG(m) =€) de

- Q0 = graph of convex functions with bounded slopes,
Muscalu proved LP*(R) x LP2(R) — LP(R)-boundedness in Local
L?—range.

= infinite lacunary polygon,
Demeter and Gautam proved LP*(R) x LP2(R) — LP(R)-
boundedness for 1 < p;,p <2and 2 < py < 0.

Q={(¢n) eR?*: £<0,2° <n<1},
Saari and Thiele proved LP*(R) x LP2(R) — LP(R)-boundedness
in Local L?—range.
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Bilinear Bochner-Riesz means

- If Q has a smooth boundary in the plane, Bernicot and Germain
proved LP* x LP?> — LP—boundedness of B3 for a > 0, when
P1,P2 > 2.

- Our result concerns open and bounded convex domains in the
plane.

Theorem (A. Bhojak,_, S. Shrivastava; to appear Math. Ann.)
Let o« > 0 and py, p2 > 2 with p—ll 4 ,le = % Then B& maps
LPr(R) x LP2(R) into LP(R), i.e,, there exists a constant

C= C(Q,a, p1,p2) > 0such that

1Ba(fs )llp < CllAllps l9llpar £ 9 € SR).
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Brief idea of the proof

- We assume that
B(0,4) c Q c Q c B(0,2"),
where M > 3 is a fixed constant.

- We approximate the convex domain Q with convex domains €,
having a smooth boundary.

- It is enough to prove LP—estimates for Bochner-Riesz means
associated with ©,, uniform in n.

- We also assume that no portion of the boundary 99 is parallel
to the coordinates axes.



- Let ¢ € C*([-2,3]) and v € C([3,2]), be such that

+Zw (1—#)=1, forallte][0,1).
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- Let ¢ € C*([-2,3]) and v € C([3,2]), be such that

+Zw (1—#)=1, forallte][0,1).

- We have the following decomposition of the multiplier.

(1= p(&m)S
= o(p(&,m)(1 - +22_’”1/) p(&m)) (2 (1~ p(&,m))S

=mo(&,n) + Z 27 my (€, m).

=1
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- We decompose each annular region into sectors and
parameterize each sector.
- Let b, € C°(R?) be a radial function supported in sector S,

22 M

such that > b,(¢,m) =1 for (&, 1) # (0,0). Hence we have
p=1

221W

my; = E mlbp.
p=1

- In each sector, we further refine boundary decomposition
depending on the curvature of the parametrized curve in each

sector and obtain
22M

ml(§7 ’r]) = Z Z ml,p,j-,V(fv 77)7

p=1 jv

Wherev=—2M—1....2M+1, j=1,...,Q, and Q < Cp2z.
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- Let Kipj = F Ymyp ) and A, = B(0,2%) \ B(0,2%1). We

write
101
Klpyu*ZKlpquAk‘i’ Z KlijXAk
k=0 k=101+1
- Kllpj v 12-,1)7]'71/'
: HK%pJVH:lN2 3,
221U o)
Z? MY Kpsal| $D27Q
p=1 jv 1 =1

92— (A+3-3)1 l< 1.

M8

S
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- let P, ;, and P} . be the projection of the support of the

multiplier my, ;,, onto £&-axis and n-axis respectively.

lp,], (f? )( ) = Kll,p,j,u * (fl,P,j,l” gl,l’aj,l’)(% LU),

~

where fip s =xp1  fand Gip . = xp2

Lp,j,v
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- let P, ;, and P} . be the projection of the support of the

multiplier my, ;,, onto £&-axis and n-axis respectively.

lp,], (f? )( ) = Kll,p,j,u * (fl,P,j,l” gl,l’aj,l’)(% LU),

~

where fip 50 = xp1  fand Gup g = xp2

L,p,j,v
- We have the following estimate
Kip s * (£,9)(2,2) S WMasor(Mfip. 0 Mgip,j)s

where M is the Hardy-Littlewood maximal function and Maso is
the bilinear Kakeya maximal function.
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Al
22 ZZK}P]V flp]V’glij>
=1 p=1 jv )
&9 92M
S22 D Mo (Mfip s Moip)
=1 p=1|| jv ,

Using the vector valued boundedness of bilinear Kakeya maximal
function and that of Hardy-Littlewood maximal function, the above

term can be dominated by

oo

=

Mg

YrHe | (St

1

1

> z2§jH(Z|ﬁW| )l

22M

1
3
H ( Z | Mgi,p,ju )
%
[omEzesly
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Maximal function

Let § be a collection of finite measure sets in R™ Consider the
maximal averaging operator associated with the collection § defined
by

Mzflz) = sup ‘% / )] dy.

FEF: 1€ F

21



Maximal function

Let § be a collection of finite measure sets in R™ Consider the
maximal averaging operator associated with the collection § defined
by

Myfie) = sup /|f )| dy.

Fes: seF | Fl

- If § is the collection of cubes (or balls) in R™, then Mz
(Hardy-Littlewood maximal operator), maps L?(R") into itself for
all 1 < p < oo with a weak-type boundedness at p = 1.
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Maximal function

Let § be a collection of finite measure sets in R™ Consider the
maximal averaging operator associated with the collection § defined
by

Mzflz) = sup ‘% / )] dy.

FEF: 1€ F

- If § is the collection of cubes (or balls) in R™, then Mz
(Hardy-Littlewood maximal operator), maps L?(R") into itself for
all 1 < p < oo with a weak-type boundedness at p = 1.

- If §is the collection of all rectangles in R", then by a well-known
Besicovitch set construction, it is known that the corresponding
operator M5 fails to be ZP—bounded forall 1 < p < 0.
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Kakeya maximal function

The Kakeya maximal function involves the averages over rectangles
with an extra condition on the sides of the rectangle.
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Kakeya maximal function

The Kakeya maximal function involves the averages over rectangles
with an extra condition on the sides of the rectangle.

For an integer N> 1and ¢ > 0, let Ry be the class of all rectangles
in R? with dimensions 6 x N and Ry = Us=oRs N-

- Cordoba proved that
1M, w222 S (log V)2,
and the logarithmic dependence on the “eccentricity” Nis sharp.

- Stromberg proved the following sharp bounds for the maximal
operator Mg,.

| Mryllz2—12 < log N
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Bilinear Kakeya maximal function

- The bilinear Kakeya maximal function associated with the
collection Ry is defined by

1
Murolf,9)(@) = sup sup — / 1)l 9(ye)] dy dys.
kSN(RE;Zk ‘R| R
z,2)ER
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Bilinear Kakeya maximal function

- The bilinear Kakeya maximal function associated with the
collection Ry is defined by

1
Mry(f,9)(z) = sup sup —-
k<N Rer, |R|

(z,z)ER

/ 1)l 9(ae) | dy dy.
R

- We can see that the bilinear Kakeya maximal function Mg, (f, g)
can be obtained by restricting the (linear) two-dimensional
Kakeya maximal function Mg, (f® g) to the diagonal
{(z,2) : € R}

23



Bilinear Kakeya maximal function

Theorem
Let 1 < p1,pp < ooand 4 = -+ --. The following bounds hold.

1. Banach case:
a) Ifp>1, MRyl Lot vz e S 1.

b) If ps =1, [Mryllzr w121 S log N.
Moreover, the bound log N is sharp.

2. Non-Banach case:
a) For1 < pi,pa <ooand 3 < p< 1, we have
1
| MzmyllLor xcpoz oo S No L
b) End-point case: If atleast one of p1 or p2 is 1 then
HMRNHLT’I xLP2 oo S V.
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Bilinear Kakeya maximal function

A

1
p2
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Bilinear Kakeya maximal function

Theorem

let1 < p1,p2 <00, 1<p<ooandl<r,m < oo 1 <7< oosatisfy
1_ 1,1 11,1
5 5 and 3 = .- + . Then for any e > 0, we have

T1
1
]
(zgjw)
ki

L
7il

Sl

o)

H (Z Mz, (ng)r)

P1 D2
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Brief idea of the proof for non-Banach case

- We observe that any rectangle R € Rs,n, we can dominate the
bilinear average over R by a bilinear average over square with
its side-length comparable to § N and containing R. This gives us

Mer; v (f, 9)(2) < N Mf(x) My(z).
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Brief idea of the proof for non-Banach case

- We observe that any rectangle R € Rs,n, we can dominate the
bilinear average over R by a bilinear average over square with
its side-length comparable to § N and containing R. This gives us

Mer; v (f, 9)(2) < N Mf(x) My(z).

- Further, we have

1
I / |f(z—y1)|lg(x — yo)| dyrdys SMf(x)Myg(z), 1< 5< 00,
R

where Mf(z) = (M(f)(2))*, 1 < s < co and Mecf(z) = |lloo.

- We get the boundedness in non-Banach range (3 < p3 < 1) with

constant Nvs ~* by interpolating weak-type estimates at points
(1,00,1),(1,1, %) and (o0, 1,1).
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Brief idea of the proof for Banach case

Lemma

Let 1 < s < co. Suppose T'is a bi-sublinear operator satisfying
|| THL“ X LP2 — [,P3,° § A7

for the following Hélder indices (pi, pa, p3):

1. (00, 00,00), (00,5, 5), (s,00,5), (5,§,1), (o0, jj-lzv s:'gj_/z): A
(35,00, 35) with A = 1.

2. (85,25, 2) with A = N3,

3. (s, 225, 535) with A = N,

4 (35,9, 5 '+1) with A = Nav.

Then, we have the following strong type estimate,

171

Loxrd -1 S log N.
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