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Introduction



Bochner-Riesz Operator

• Let α ≥ 0 and n ≥ 1,

Bα
R(f)(x) =

∫
Rn

(
1 − |ξ|2

R2

)α

+

f̂(ξ)e2πix·ξdξ.

•
(

1 − |ξ|2
R2

)
+
=

{
1 − |ξ|2

R2 |ξ| ≤ R,
0 |ξ| > R.

• We can also write

Bα
R(f)(x) = Kα

R ∗ f(x).

• Kα
R(x) = cn,αRn J n

2 +α(2πR|x|)

(R|x|)
n
2 +α .

• When R = 1, we write Bα
R = Bα.
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Bochner-Riesz Operator

Question
When does Bα

Rf(x) → f(x) as R → ∞?

• For α > n−1
2 , Kα

R is an integrable kernel.

• (Fefferman) If α = 0 and n ≥ 2, B0 : Lp(Rn) → Lp(Rn) if and only
if p = 2.

• Let α(p) = max
{

0,n
∣∣∣ 1

p − 1
2

∣∣∣− 1
2

}
.

Theorem (Bochner-Riesz conjecture)
Bα is bounded from Lp(Rn) into Lp(Rn) if and only if α > α(p).
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Bilinear Bochner-Riesz Operator

• Let α ≥ 0 and n ≥ 1, the bilinear Bochner-Riesz operator is
defined by

Bα
R(f, g)(x) =

∫
Rn

∫
Rn

(
1 − |ξ|2 + |η|2

R2

)α

+

f̂(ξ)ĝ(η)e2πix·(ξ+η)dξdη.

• We can write

Bα
R(f, g)(x) = Kα

R ∗ (f ⊗ g)(x, x),

where (f ⊗ g)(x, y) = f(x)g(y).

• Kα
R(y, z) = cn,αR2n Jα+n(2πR|(y,z)|)

|R(y,z)|α+n , y, z ∈ Rn.

• When R = 1, we denote Bα
R by Bα.
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Bilinear Bochner-Riesz Operator

• We have the kernel estimate

|Kα(y, z)| ≤ 1

(1 + |y|)
n+α+ 1

2
2

1

(1 + |z|)
n+α+ 1

2
2

.

• Thus, for α > n − 1
2 , we have

Bα : Lp1(Rn)× Lp2(Rn) → Lp(Rn),

whenever 1 ≤ p1, p2 ≤ ∞ satisfying Hölder relation 1
p1

+ 1
p2

= 1
p .
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Bilinear Bochner-Riesz Operator

When α = 0, the bilinear Bochner-Riesz operator is known as the
bilinear ball multiplier.

• Grafakos and Li (Amer. J. Math., 2006)
When n = 1, B0 : Lp1(R)× Lp2(R) → Lp(R) for 2 ≤ p1, p2 <∞
and 1 < p ≤ 2.
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• Diestel and Grafakos (Nagoya Math. J., 2007)
When n ≥ 2, B0 is not bounded if exactly one of p1, p2, or p′ less
than 2.
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Bilinear Bochner-Riesz Operator

Some results on Lp1 × Lp2 → Lp-boundedness of bilinear
Bochner-Riesz operator for p ≥ 1 were first given by F. Bernicot et al.
(J. Anal. Math.,2015)
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Bilinear Bochner-Riesz Operator

Jeong, Lee and Vargas (Math. Ann., 2018) improved the range of
exponent α when p1, p2 ≥ 2.
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Bilinear Bochner-Riesz Operator

Liu and Wang (Proc. Amer. Math. Soc., 2020) extended the
boundedness results in the non-Banach triangle (i.e. p < 1).
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Bilinear Bochner-Riesz Operator

Kaur and Shrivastava (Adv. Math., 2022) obtained boundedness in
non-Banach range in dimension n = 1.

11



Bilinear Bochner-Riesz means for
convex domain in the plane



Bilinear Bochner-Riesz means

• Let (0, 0) ∈ Ω be an open and bounded convex set in the plane
R2 and ∂Ω denote the boundary of Ω.

• Consider the Minkowski functional associated with Ω given by,

ρ(ξ) = inf{t > 0 : t−1ξ ∈ ∂Ω}.

• The Bochner-Riesz mean of index α > 0 associated with the
convex domain Ω is defined by

Bα
Ωf(x) =

∫
R2
(1 − ρ(ξ))α+ f̂(ξ)e2πix·ξ dξ.

• Sjölin and Hörmander studied the Bochner-Riesz means when Ω

has a smooth boundary in the plane.

• Seeger and Ziesler extended the study to open and bounded
convex domains in the plane.
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Bilinear Bochner-Riesz means for α = 0

• The bilinear Bochner-Riesz mean of index α ≥ 0 associated with
the convex domain Ω is defined by

Bα
Ω(f, g)(x) =

∫
R

∫
R
(1 − ρ(ξ, η))α+ f̂(ξ)ĝ(η)e2πix(ξ+η) dξdη.

• Ω = graph of convex functions with bounded slopes,
Muscalu proved Lp1(R)× Lp2(R) → Lp(R)-boundedness in Local
L2−range.

• Ω = infinite lacunary polygon,
Demeter and Gautam proved Lp1(R)× Lp2(R) → Lp(R)-
boundedness for 1 < p1, p < 2 and 2 < p2 <∞.

• Ω = {(ξ, η) ∈ R2 : ξ ≤ 0, 2ξ ≤ η < 1},
Saari and Thiele proved Lp1(R)× Lp2(R) → Lp(R)-boundedness
in Local L2−range.

13
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Bilinear Bochner-Riesz means

• If Ω has a smooth boundary in the plane, Bernicot and Germain
proved Lp1 × Lp2 → Lp−boundedness of Bα

Ω for α > 0, when
p1, p2 ≥ 2.

• Our result concerns open and bounded convex domains in the
plane.

Theorem (A. Bhojak, , S. Shrivastava; to appear Math. Ann.)
Let α > 0 and p1, p2 ≥ 2 with 1

p1
+ 1

p2
= 1

p . Then Bα
Ω maps

Lp1(R)× Lp2(R) into Lp(R), i.e., there exists a constant
C = C(Ω, α, p1, p2) > 0 such that

∥Bα
Ω(f, g)∥p ≤ C∥f∥p1∥g∥p2 , f, g ∈ S(R).
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Brief idea of the proof

• We assume that

B(0, 4) ⊂ Ω ⊂ Ω ⊂ B(0, 2M),

where M ≥ 3 is a fixed constant.

• We approximate the convex domain Ω with convex domains Ωn
having a smooth boundary.

• It is enough to prove Lp−estimates for Bochner-Riesz means
associated with Ωn uniform in n.

• We also assume that no portion of the boundary ∂Ω is parallel
to the coordinates axes.
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Cont.

• Let ϕ ∈ C∞
c ([− 3

4 ,
3
4 ]) and ψ ∈ C∞

c ([ 1
2 , 2]), be such that

ϕ(t) +
∞∑

l=1
ψ(2l(1 − t)) = 1, for all t ∈ [0, 1).

• We have the following decomposition of the multiplier.

(1 − ρ(ξ, η))α+

= ϕ(ρ(ξ, η))(1 − ρ(ξ, η))α+ +

∞∑
l=1

2−αlψ(2l(1 − ρ(ξ, η)))(2l(1 − ρ(ξ, η)))α+

= m0(ξ, η) +

∞∑
l=1

2−αlml(ξ, η).
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Cont.

• We decompose each annular region into sectors and
parameterize each sector.

• Let bp ∈ C∞
c (R2) be a radial function supported in sector Sp

such that
22M∑
p=1

bp(ξ, η) = 1 for (ξ, η) ̸= (0, 0). Hence we have

ml =
22M∑
p=1

mlbp.

• In each sector, we further refine boundary decomposition
depending on the curvature of the parametrized curve in each
sector and obtain

ml(ξ, η) =

22M∑
p=1

∑
j,ν

ml,p,j,ν(ξ, η),

where ν = −2M − l, . . . , 2M + l, j = 1, . . . ,Q, and Q ≲ CM2 l
2 .
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where ν = −2M − l, . . . , 2M + l, j = 1, . . . ,Q, and Q ≲ CM2 l
2 .
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Cont.

• Let Kl,p,j,ν = F−1(ml,p,j,ν) and Ak = B(0, 2k) \ B(0, 2k−1). We
write

Kl,p,j,ν =

10l∑
k=0

Kl,p,j,νχAk +

∞∑
k=10l+1

Kl,p,j,νχAk

= K1
l,p,j,ν + K2

l,p,j,ν .

• ∥K2
l,p,j,ν∥1 ≲ 2−3l.

• ∥∥∥∥∥∥
∞∑

l=1
2−λl

22M∑
p=1

∑
j,ν

K2
l,p,j,ν

∥∥∥∥∥∥
1

≲
∞∑

l=1
2−(λ+3)llQ

≲
∞∑

l=1
2−(λ+3− 1

2 )ll ≲ 1.
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Cont.

• Let P1
l,p,j,ν and P2

l,p,j,ν be the projection of the support of the
multiplier ml,p,j,ν onto ξ-axis and η-axis respectively.

K1
l,p,j,ν ∗ (f, g)(x, x) = K1

l,p,j,ν ∗ (fl,p,j,ν , gl,p,j,ν)(x, x),

where f̂l,p,j,ν = χP1
l,p,j,ν

f̂ and ĝl,p,j,ν = χP2
l,p,j,ν

ĝ.

• We have the following estimate

K1
l,p,j,ν ∗ (f, g)(x, x) ≲ lM230l(Mfl,p,j,ν ,Mgl,p,j,ν),

where M is the Hardy-Littlewood maximal function andM230l is
the bilinear Kakeya maximal function.
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Cont.

∥∥∥∥∥∥
∞∑

l=1
2−λl

22M∑
p=1

∑
j,ν

K1
l,p,j,ν ∗ (fl,p,j,ν , gl,p,j,ν)

∥∥∥∥∥∥
p

≲
∞∑

l=1
2−λl

22M∑
p=1

∥∥∥∥∥∥
∑
j,ν

lM230l(Mfl,p,j,ν ,Mgl,p,j,ν)

∥∥∥∥∥∥
p

.

Using the vector valued boundedness of bilinear Kakeya maximal
function and that of Hardy-Littlewood maximal function, the above
term can be dominated by

∞∑
l=1

2−λl
2 l2

22M∑
p=1

∥∥∥(∑
j,ν

|Mfl,p,j,ν |2
) 1

2
∥∥∥

p1

∥∥∥(∑
j,ν

|Mgl,p,j,ν |2
) 1

2
∥∥∥

p2

≲
∞∑

l=1
2−λl

2 l2
22M∑
p=1

∥∥∥(∑
j,ν

|fl,p,j,ν |2
) 1

2
∥∥∥

p1

∥∥∥(∑
j,ν

|gl,p,j,ν |2
) 1

2
∥∥∥

p2
≲ ∥f∥p1∥g∥p2 .
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Bilinear Kakeya maximal function



Maximal function

Let F be a collection of finite measure sets in Rn. Consider the
maximal averaging operator associated with the collection F defined
by

MFf(x) = sup
F∈F: x∈F

1
|F|

∫
F
|f(y)| dy.

• If F is the collection of cubes (or balls) in Rn, then MF

(Hardy-Littlewood maximal operator), maps Lp(Rn) into itself for
all 1 < p ≤ ∞ with a weak-type boundedness at p = 1.

• If F is the collection of all rectangles in Rn, then by a well-known
Besicovitch set construction, it is known that the corresponding
operator MF fails to be Lp−bounded for all 1 ≤ p <∞.
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Kakeya maximal function

The Kakeya maximal function involves the averages over rectangles
with an extra condition on the sides of the rectangle.

For an integer N > 1 and δ > 0, let Rδ,N be the class of all rectangles
in R2 with dimensions δ × δN and RN = ∪δ>0Rδ,N.

• Córdoba proved that

∥MR1,N∥L2→L2 ≲ (logN)
1
2 ,

and the logarithmic dependence on the “eccentricity” N is sharp.

• Strömberg proved the following sharp bounds for the maximal
operator MRN .

∥MRN∥L2→L2 ≲ logN.
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Bilinear Kakeya maximal function

• The bilinear Kakeya maximal function associated with the
collection RN is defined by

MRN(f, g)(x) = sup
k≤N

sup
R∈Rk
(x,x)∈R

1
|R|

∫
R
|f(y1)||g(y2)|dy1dy2.

• We can see that the bilinear Kakeya maximal functionMRN(f, g)
can be obtained by restricting the (linear) two-dimensional
Kakeya maximal function MRN(f ⊗ g) to the diagonal
{(x, x) : x ∈ R}.
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Bilinear Kakeya maximal function

Theorem
Let 1 ≤ p1, p2 ≤ ∞ and 1

p = 1
p1

+ 1
p2
. The following bounds hold.

1. Banach case:
a) If p > 1, ∥MRN∥Lp1×Lp2→Lp ≲ 1.
b) If p3 = 1, ∥MRN∥Lp1×Lp2→L1 ≲ logN.

Moreover, the bound logN is sharp.
2. Non-Banach case:

a) For 1 < p1, p2 ≤ ∞ and 1
2 < p < 1, we have

∥MRN∥Lp1×Lp2→Lp ≲ N
1
p −1.

b) End-point case: If atleast one of p1 or p2 is 1 then
∥MRN∥Lp1×Lp2→Lp,∞ ≲ N.
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Bilinear Kakeya maximal function
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Bilinear Kakeya maximal function

Theorem

Let 1 < p1, p2 <∞, 1 ≤ p <∞ and 1 < r1, r2 ≤ ∞, 1 ≤ r ≤ ∞ satisfy
1
p = 1

p1
+ 1

p2
and 1

r = 1
r1

+ 1
r2
. Then for any ϵ > 0, we have

∥∥∥∥∥
(∑

j
|MRN (fj, gj)|r

) 1
r
∥∥∥∥∥

p

≲ Nϵ

∥∥∥∥∥
(∑

j
|fj|r1

) 1
r1
∥∥∥∥∥

p1

∥∥∥∥∥
(∑

j
|gj|r2

) 1
r2
∥∥∥∥∥

p2

.
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Brief idea of the proof for non-Banach case

• We observe that any rectangle R ∈ Rδ,N, we can dominate the
bilinear average over R by a bilinear average over square with
its side-length comparable to δN and containing R. This gives us

MRδ,N(f, g)(x) ≤ N Mf(x)Mg(x).

• Further, we have
1
|R|

∫
R

|f(x − y1)||g(x − y2)| dy1dy2 ≲Msf(x)Ms′g(x), 1 ≤ s ≤ ∞,

where Msf(x) = (M(fs)(x)) 1
s , 1 ≤ s <∞ and M∞f(x) = ∥f∥∞.

• We get the boundedness in non-Banach range ( 1
2 < p3 < 1) with

constant N
1

p3
−1 by interpolating weak-type estimates at points

(1,∞, 1), (1, 1, 1
2 ) and (∞, 1, 1).
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Brief idea of the proof for Banach case

Lemma

Let 1 < s <∞. Suppose T is a bi-sublinear operator satisfying

∥T∥Lp1×Lp2→Lp3,∞ ≲ A,

for the following Hölder indices (p1, p2, p3):

1. (∞,∞,∞), (∞, s′, s′), (s,∞, s), (s, s′, 1), (∞, 3s′
s′+2 ,

3s′
s′+2 ), and

( 3s
s+2 ,∞, 3s

s+2 ) with A = 1.

2. ( 3s
s+2 ,

3s′
s′+2 ,

3
4 ) with A = N 1

3 .

3. (s, 3s′
s′+2 ,

3s
3s+1 ) with A = N 1

3s .

4. ( 3s
s+2 , s

′, 3s′
3s′+1 ) with A = N 1

3s′ .

Then, we have the following strong type estimate,

∥T∥Ls×Ls′→L1 ≲ logN.
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