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Maximal Operators and
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Maximal Operators in Harmonic analysis

» Hardy-Littlewood maximal function:

1
Mpyrf(z) = sup

——— f(y)|dy.
P B0 Jay )

» Spherical maximal function:

Mpn f(x) = sup

t>0 ’ §da-1

f(@ ~ ty)do(y)|-
+ Maximal Bochner-Riesz operator:
SUN)@ = swp w0 @), mie) = (1-1eP)’

« Maximal operator associated with Schrédinger equation:

M(f)(z) = sup

t>0

e f(z)

e etc...



L? boundedness and Pointwise Convergence

* IMurfller@ey S 1 fllr@aey, 1<p<oo.
=> [0 f(@ +ty)dy — f(z) as t — 0 for aimost every z € R4
whenever f € L}

loc*

o [ Mopnfllo@ay S N fllzeraey, 755 <p < oo, d > 2.
=> [ f(z +ty)do(y) — f(z) as t — 0 for almost every = € R?
whenever f € LP.

* 182 e ey S IfllLr(ray, 6> (d—1)
Results :
e p > 2; Carbery(d = 2, Duke Math. J. 1983), Lee(d > 3, Duke Math. J. '04),
Gan-Jing-Wu(d = 3, arXiv '21), Gan-Oh-Wu(d > 4, arXiv '21),
* p < 2; Tao(d > 3, Indiana Univ. Math. J. 1998), and Li-Wu(d = 2, Math.
Ann. °20, arXiv '24).

i _ 4
P 2|

=> S9(f)(x) — f(x) ast — oo for aimost every = € R9.
* The convergence itself(p > 2) is fully resolved by Carbery-Rubio de
Francia-Vega, 1988.



L? boundedness and Pointwise Convergence

eitAf(x) _ / 6271'2’00-567#(277\&\)2J/c\(g)dg.
JRd

%&gu = Au;  u(z,0) = f(z); zeR%te(0,00).

+ Sharp L? maximal estimates

|

= || sup |e
L2(B(0,1)) Hte(o,l]‘

< C(s)lf]

L2(B(0,1))

Hs(Rd); S >

itA |'

2(d+1)
« (PWC)

lim e2 f(z) = f(z), a.e. x€RY,

t—0

whenever f € H*(R?) and s > gty

s>

> 2<d+1) is necessary for (PWC) due to J. Bourgain.



Maximal operators and Fourier multipliers

All Mg, Mgph, S99 are given in terms of Fourier multipliers.

T (f)(z) = / ™= Em () f(€)dE,

Rd

M’m(f)(a:) = sup Tm(t)(f)(m) o

t>0
For example,
. Jn/2(1€
MHL : m(f) = XB(O,l)(é) = |§/'|2n(/|2)’

Mgpr - m(€) =do(€) =

)

Ik
ST im(€) =1 - )%, t—t

M:m(&) = e2milel® ¢y 41/2,

Question : For which condition, is M,,, bounded on L?(R%)?



Abstract Theory for m; Hormander-Mikhlin multipliers

Recall that
Tou(f)(@) = (mf) (@),
Tu(f)(et) = [ | = emu)Fe)de,
Mun(£)(@) i= sup| T (£) (@, 1)

t>0

T,, satisfies LP-boundedness for all p € (1, 00) whenever

— A)5/2 7\ = N =
jteuz) H(I A)*=m(2 )w‘ A S]lellz) Hm(2 ) o <00, s> (HM)
(HM) is not sufficient for L?-boundedness of M., f.
It requires for p, g € (0,00), r = min(p, 2)
1/q d
(Z (2 )12, Rd)) <00, 5> (CGHS)

* (CGHS) is given by Christ-Grafakos-Honzik-Seeger('05, Math. Z., ’06, Adv.
Math.).



Remark on (

The condition (CGHS),

r

o 1/q d
(3 I (@ )dle gey) <00, 5>
J

cannot cover both M, and sup,

Intuition for (CGHS):

6itAf’.

d
0°m(&)] S (L +1E)=5, e>0,]al > >

Intuition for M, and e**4 :

|0°m(€)| < 16|77, ~ >0, oreven worse.



Motivation in Potential Theory

Let f be a twice differentiable function.

Then we have

flz +ty)do(y) — f(z) = As(f)(x,t) — f(x)

g1
:C/OtT(/B(O 1)(Af)(x—|—ty)dy)d7',

which gives

sup | (As(N(e 1) — £(@))] £ MA@,

t>0
Therefore, for f and Af in L? we have
As(f)(x,t) = f(z) = O@?).

Recall that As(f)(x,t) — f(z) = O(1) whenever f € LP.
Q: As(f)(z,t) — f(x) = O(t*) whenever f, A®/2f € LP for o € (0,2]?



Motivation in Potential Theory

Let

o~

As(w.t) = [ emmimt)fene, mie) = (o).

Then we have
1

= (st - f@) = [ e ™ =LK e)ae.

Rd 23
Therefore, our goal is to show

m(€) — 1

[sup [Ty Flll e S fllzes mall) = —F5—
£>0 €]

We also want to suggest a condition for m, which guarantees such L?
boundedness.
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Maximal operators with dilation sets £ C (0, c0)

Let F be a subset of (0,0). Then we define MZ by

M (f)(@) = sup |Tonge) (f) ()] (1)

« E could be {27} ¢z, Cator sets, etc.
« Differentiation theorem will hold for associated dilation sets.
* We will use x = x(F) to denote a dimension quantity.

Until explained thoroughly, please regard x(E) as just a dimension of E.
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Spherical averages with dilation in £

Let dim(F) € [0,1) and define
ME_, f(x) = sup fla—ty) do(y)|- )
teE ' Jsd-1

Then we have
Theorem (Seeger-Wainger-Wright, 1995)

Ford>2, |ME_,|pop < oo, ifp > 1+ 2E).

. - H() d
Ifk(E)=1,then1+ 28 =14 L. = _d

e lfd=2and k(F) < 1, then1+“(E)_1+/<(E)<2.

« For E C [1,2], L? — L% bounds of MZ_, are studied by
Anderson-Hughes-Roos-Seeger(d > 3, '20), Roos-Seeger(d = 2, '23).
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Averages over measures and Fourier multipliers

Theorem (Duoandikoetxea-Vargas, 1998)

1. Letm be the Fourier transform of a compactly supported finite Borel
measure, and E C (0, 00). Assume that |m(§)| < C|¢|~* for some

a > k(E)/2. Then ME is bounded on LP(R?) forp > 1 + {2,

2. Lets=[d/2]+1,m e C*, and E C (0,00). Assume that
|07m(€)| < C|¢|~2 for all |y| < s+ 1 and some a > k(E)/2. Then ME s
bounded on L?(R%) for

2d - <2df/£(E)
d+ 2a — k(E) P d—2a

« By taking a = 4 and x(E) € [0, 1), this theorem recovers the result fo
Seeger-Wainger-Wright.

» The range of p in the second statement seems sharp, we will introduce a
result with improved regularity condition on m.
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Result and applications;
E = (0, 00)




Let X be a Banach space of functions on R¢. Then we define ¥2(X) with
norm given by

Ifls300 = (@1 IDIx0)

J
If 6 = 0, we simply write $2(X).
Theorem (L.-Seo, JFA, *23)

Letp € (1,00), pio = ‘% = %’ and s > z% —|—min{%,% . Then we have

s

’LP(Rd) fs ||m||22(B§0)||f”LP(Rd,). (L'S)

* B, = B, , denotes the Besov space.

g N1/p
115 ~ IS0 fllze + (D@7 Ity  Fllza)?)
Jj=0

1 € .7 is chosen so that supp(qﬂ) c{3<¢<2}and diez 1/7(2*47'5) =]l 1



Example of X space; Weighted Sobolev spaces

We introduce a weighted Sobolev space, HS"” (R?).

2l
1 W@ gopy = 2= [, 1P S @)l da.
§TERNOY T L [,

By dyadic decomposition around the origin, it follows that

2 l Pl .. |pl+0—d N U 70 . PN s
;/RJD f(@)[P|=] do~ Y2 /Rd ID'(f(272)d())|Pdz,

1=0 jEZ

which yields
I flzz> ®argoy) ~ N fllse, (z2)-

0/p

The weighted Sobolev spaces is used to study boundary behavior of a
function mostly appeared in theory of partial differential equations.
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Regularity near the origin

Corollary
Letp & (1,00) and m be of class B;, (R%) where s > & 4+ min{}, 1}. Then
for any fixed ¢y € C°(R%) we have

[Mimgo ()l Lrrey S Ml Bs ®ayllfllLe ey
PO

If m is of class L2(RY) with s > “HL, then || Mg, || Lo— - is bounded for any
p € (1,00).
By the range s > % we improve the result of Rubio de Francia(1986, Adv.

Math., Duke Math. J.) which requires m € CL2/*2(R4) for M, , to be bounded
on LP.

16



) and (

Two conditions cannot be directly compared!

However,
when p <2
(CGHS) :
i d
S (@)l gay < 00, T=p, 5> =
. s p
JEZ
(L-S) :
1 33 1 1 1 d d 1
29 )eh|1%. Bl ae_a -
Z ||m( )’(/)HB})O(R.&) < oo, 7o - 0% S > » 5 + 5

JEL

There is % gain in the sense of regularity.
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Applications

* Leta €(0,1) and 3 > 3. Define

~

Maopf = ?1;8 (m'mﬂ(t')f)v ) mw-ﬂ(f) = ei‘g‘amﬁ(f)a

where mg vanishes near the origin and satisfies |07mg(¢)| < [¢]~#~ 1.

Then 91, 4 satisfies LP-boundedness for § 770 < L < 4=1720/a,

e Let

et=D)"% £y _ (g
Uo () ) = 200

Then for almost all z € R,

Gt £(z) — f(a) = O(tF).

18



Applications

. Letm e CEF Y (®RY), 1m(0) = 1, and |avm( )| < (1+€))~5. Then, for

loc

o€ (0,1) and f € L2 (R?) with % <l< %{g‘”ﬁ) we have

f(@) = Ty f(x) = O(t™), for almost = € R?.

» For 8 = %1 we have j=22 < 1 < 24-24e
and do satisfies |07de(¢)| < (1 + eN=7.

That is, it follows that for almost every «

f(x) = As(f)(z, 1) = O(t%),

whenever f € L2 (R?).

* For direct computation on do gives us « € (0,2) case.
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Result and applications;
dim(F) € [0, 1]




First of all, we define the dimension quantity, x(E).

) log N(Ej;,9)
E) := lim sup ————~
w(B) = [ sup = s

where E; := (277E) N [1,2], and N(E, 6) is the entropy number of £,

N(E,d) :=#{k e N| EN[kd, (k +1)d] # 0}~ 6 P.

cletE={1+n""|n=1,2,...},a>0. Thenk(E) = (1 +a)" "
* For a compact E, x(F) equals the Minkowski dimension of E,

dima(E) :=inf{a > 0] 3C > 0, such that V¢ € (0,1), N(E,d) < Cd~*}

20



Theorem (L.-Seo, 2024 +)

Letp € (1,00) and E C (0,00) satisfy k(E) < 1. Suppose that m is of class
¥%(Bg,) with1/po = |1/2 —1/p| and

d 11
§>— +K(E min{f,f}.
Po (&) 2°p

Then ME is bounded on L»(R?).

* For E = (0, 00), we have s > - —&—min{%., %}

» We recover the result (2) of Duoandikoetxea-Vargas.

21



A pointwise convergence result

Let ma,p(€) := e>™ " mg(€), where

c0<a<landp >0,

* mg vanishes near the origin, and
107ms(€)| < J€|7#~1! for any multi-index .

Then we have

||Mma,gHLP(Rd)_>Lp(Rd) < 00, (4)
whenever 2?(127;(/“)) < L H2B/ecr(B)
When r(E) = 1, it follows that $22/% < 1 < #¥28/a=1 yhich is the range of

p in the Applications 1
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Using the estimates of the previous slide, one can obtain a convergence
result of solutions to fractional Schrédinger equations:

Leta € (0,1), B € (k(E)/2,1). Suppose f € LE, for

Mcﬁif%})) T 426=r(E) Then we have

le= =2 ¢(z) — f(z)| = O(t?), t—0onE,

where e~(—=2)""* f denotes a solution to fractional Schrédinger(half-wave)
equations with initial data f. Note that one needs § > x(FE)/2 for f € L,
which yields
ak(E)

5
By this observation, we recover the convergence result of
Cho-Ko-Koh-Lee('23) for a € (0,1) and d > 2:

s=af >

lim (2" f(2) = f(2) ae.z, VfelL?

n—oo

whenever s > ”gﬂ and dim g ({tn }n) = £(E).

23



Sketch of Proofs




Sketch of Proofs

A general strategy; the case of E = (0, c0)
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Some Fractional Calculus and Square Functions

Let us define for a € (0, 1)

1 t
Ig f(t) = o) /0 (t—s)*"1f(s)ds
d
D§,F(t) := = (B7°F) ).
Then we have
Lemma
F(t) = I, D§, F(t) + 515 F(O)
By this lemma, we have m/(t¢) = 7 6)IO2++€ ((~)_%_Eﬁ%('€)) (t),
where

m(§) =m(§) + (% +€> /O~1 m((f)_sg(jf)ds

25



Thus we have

| mﬁﬁ (2 Ty f)|°
2

t
‘F(l —¢) /0 (b —s)"3¥°57 2" Ty fds

t

d

§/(t ) 1+2¢ 72Edsx/ |T )f|2 S
J0

o dt

M fI? S / | Tz )f| =: Ga(f)*

2

26



Vector-valued operators, Embeddings, and Bilinear interpolation

 Vector-valued harmonic analysis for singular integral operators.

1G7 (P2 < lImllx | f]]z2

IGwH(HlIzr < Imlly |fllze,  1Ga(H)IBamo < lmlly || fllze

« Embeddings.

Imllx S llmllx, o Imlly S llmllvi .

* Bilinear interpolation of A. P. Calderon.

I1B(f:9)lloo < Mol| fll 401191l 3o
IB(f,9)lley < M| f]la,llglls,

0

”B(fa g)”[C’o,Cﬂe < AI()ligjwlel‘f”[1407141]9Hg(/]‘|[3(),131]9'

27



Vector-valued harmonic analysis

Let T,,,(f)(z,t) be an L?(R, 4)-valued operator and H = L?(R,, 4t).

 Then L?(H) — L?(H) operator norm of T,,, is

> dt\1/2
toP= = (e
iilg(/o |m (t€)| P ) ImlL (H)

« For H! — L* boundedness, we have for 3 > ¢

> dty1/2 o
/|r|>2|y| (/0 Ko —v) = K@)'5) " do S sup (2160 () -

VIS

For each operator norms we have

1/2
Imllze ey S (32 Mm@ )OE=) = Imlsa ),

JEZ

sup [m(27t)P(€)l| 30y S lImlls2zz)-
JEZ

28



Embeddings

From the previous slide, we have

HGﬁ|‘L'—’—>L2 < HﬁLHx2<Co,a),

and  [|Gallmisi, |Grlloe—brmo < Mgz 2y, B>

For these spaces, we have shown that

17l[22(coey S 1Ml o, 34

|‘m“22(L%+E) 5 ”mHE?(L%J#+5)

That is, the mapping m — m yields 1-derivative in terms of £2(X) spaces.

29



Putting all together

1. Control M,,,(f) by G f.
2. Consider G f as a bilinear map B(m, f).

3. Put X = £2(C%3%), Y = £2(L2

1. _), which gives

M fllzz S Imllx | Fllz2,
M fller S Imlly [fllar, and M flizao S llmlly [|fllze-
4. Apply Calderdn’s bilinear interpolation.

[2(C579), B (L, o = T ([C%37, L, Jo)

Taking 0 = 2|1 — 1| yields [CO4+<, I3, ], = B,
with s > & 4§ and -
Po

5. M f]

1
[F)

e S llmlls2css ) 1f 1| Le re)-

30



Sketch of Proofs

Dimensions and square functions; the case of x(E) € [0, 1]
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The Assouad & Aikawa dimensions

We call x(E) the Assouad dimension of E, dim45(F).

Definition (Aikawa dimension)

Let X = (X, u,d) be a general metric space and its doubling dimension is
n. For E C X, let G(E) be the set of ¢t > 0 for which there exists a constant
¢; such that

dist(y, B)"™™ du < cor' " u(B(z, 7))
B(z,r)

for every x € E and all r € (0,diam(E)). Then the Aikawa dimension of E is
defined to be dim4;(F) = inf G(E).

32



Theorem
Let X be a Q-regular metric measure space, and E C X. Then
dimAs(E) = dimA[(E).

A measure p is Q-regular for @ > 1, if there is a constant ¢ > 1 such that
CélrQ < u(B(z,r)) < cor®, Va € X,r € (0,diam(X)).
Then we have

* dimug(F) < dim47(F) holds for a doubling metric measure space.
* dimy;(F) < dimag(F) holds for a Q-regular metric measure space.

33



Bounds of MZ using square functions

Lemma (Lemma 3.1, L.-Seo, ’24+)

For E C (0,00), let E; = 277E N [1,2]. Suppose dimas(E) < D, for some
Dy € (0,1]. Then fora, B € R with 22 < o < 3 <1 and

F € Cloe([0,0)) N C22((0,00)), we have

loc

2
sup [P 3 / dist(s, E;) ™ *2|Dg, Fy(s)|? ds,  Fy(s) = F(2s).
JEL

By taking F(s) = T,,,(s).f, We obtain a square function G¥(m, f).

Lemma (Lemma 3.2, L.-Seo, ’24+)
Let E be a non-empty setin [1,2]. Forany a € (0,1), we have

2 1
dX
sup 0’N(E,J) <, / dist(t,E)*Ha dt <, 1 +/ ANN(E,N\) —.
0<6<1 J1 0 A
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Following general strategy, one can obtain
1165, Nl S Imllsaes,,, I llm,

2. 1G%(m, Hllzao < lImllsaez ,, HlIfllze,

8. 1% (m, fllzz S Imllsaccoe I fllze-

We apply bilinear interpolation on (1, 3) and (2, 3) to prove the theorem.
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Thank you so much!

36



	Maximal Operators and  Fourier Multipliers
	Result and applications; E = (0, )
	Result and applications; dim(E)[0,1]
	Sketch of Proofs
	A general strategy; the case of E=(0,)
	Dimensions and square functions; the case of (E)[0,1]


