L^p bounds of maximal operators given by Fourier multipliers with some dilation sets

Jin Bong Lee (Joint work with Jinsol Seo) October 9th, 2024, APRG seminar

Seoul National University

Maximal Operators and Fourier Multipliers

Result and applications; $E = (0, \infty)$

Result and applications; $\dim(E) \in [0, 1]$

Sketch of Proofs

A general strategy; the case of $E = (0, \infty)$

Dimensions and square functions; the case of $\kappa(E) \in [0,1]$

Maximal Operators and Fourier Multipliers

Maximal Operators in Harmonic analysis

· Hardy-Littlewood maximal function:

$$\mathcal{M}_{HL}f(x) = \sup_{t>0} \frac{1}{|B(x,t)|} \int_{B(x,t)} |f(y)| \mathrm{d}y.$$

• Spherical maximal function:

$$\mathcal{M}_{sph}f(x) = \sup_{t>0} \Big| \int_{\mathbb{S}^{d-1}} f(x-ty) \mathrm{d}\sigma(y) \Big|.$$

• Maximal Bochner-Riesz operator:

$$S_*^{\delta}(f)(x) = \sup_{t>0} \left| (m^{\delta}(\cdot/t)\hat{f})(x) \right|, \quad m^{\delta}(\xi) = \left(1 - |\xi|^2\right)_+^{\delta}.$$

· Maximal operator associated with Schrödinger equation:

$$\mathfrak{M}(f)(x) = \sup_{t>0} \left| e^{it\Delta} f(x) \right|$$

• etc...

- $\|\mathcal{M}_{HL}f\|_{L^p(\mathbb{R}^d)} \lesssim \|f\|_{L^p(\mathbb{R}^d)}, \quad 1$ $=> <math>\int_{B(0,1)} f(x+ty) dy \to f(x)$ as $t \to 0$ for almost every $x \in \mathbb{R}^d$ whenever $f \in L^1_{loc}$.
- $\|\mathcal{M}_{sph}f\|_{L^{p}(\mathbb{R}^{d})} \lesssim \|f\|_{L^{p}(\mathbb{R}^{d})}, \quad \frac{d}{d-1}$ $=> <math>\int_{\mathbb{S}^{d-1}} f(x+ty) d\sigma(y) \to f(x)$ as $t \to 0$ for almost every $x \in \mathbb{R}^{d}$ whenever $f \in L^{p}$.
- $||S_*^{\delta}(f)||_{L^p(\mathbb{R}^d)} \lesssim ||f||_{L^p(\mathbb{R}^d)}, \quad \delta > (d-1) \left|\frac{1}{p} \frac{1}{2}\right|.$ Results :
 - $p \ge 2$; Carbery(d = 2, Duke Math. J. 1983), Lee($d \ge 3$, Duke Math. J. '04), Gan-Jing-Wu(d = 3, arXiv '21), Gan-Oh-Wu($d \ge 4$, arXiv '21),
 - $p \le 2$; Tao $(d \ge 3$, Indiana Univ. Math. J. 1998), and Li-Wu(d = 2, Math. Ann. '20, arXiv '24).
 - $=>S_t^{\delta}(f)(x) \to f(x)$ as $t \to \infty$ for almost every $x \in \mathbb{R}^d$.
 - * The convergence itself($p \ge 2$) is fully resolved by Carbery-Rubio de Francia-Vega, 1988.

L^p boundedness and Pointwise Convergence

$$e^{it\Delta}f(x) = \int_{\mathbb{R}^d} e^{2\pi i x \cdot \xi} e^{-it(2\pi|\xi|)^2} \widehat{f}(\xi) \mathrm{d}\xi.$$

$$\frac{1}{i}\partial_t u = \Delta u; \quad u(x,0) = f(x); \quad x \in \mathbb{R}^d, t \in (0,\infty).$$

• Sharp L² maximal estimates

$$\left\|\mathfrak{M}(f)\right\|_{L^{2}(B(0,1))} = \left\|\sup_{t\in(0,1]}|e^{it\Delta}f|\right\|_{L^{2}(B(0,1))} \le C(s)\|f\|_{H^{s}(\mathbb{R}^{d})}, \quad s > \frac{d}{2(d+1)}.$$

• (PWC)

$$\lim_{t \to 0} e^{it\Delta} f(x) = f(x), \quad a.e. \ x \in \mathbb{R}^d,$$

whenever $f \in H^s(\mathbb{R}^d)$ and $s > \frac{d}{2(d+1)}$.

* $s \geq \frac{d}{2(d+1)}$ is necessary for (PWC) due to J. Bourgain.

Maximal operators and Fourier multipliers

All $\mathcal{M}_{HL}, \mathcal{M}_{sph}, S^{\delta}_{*}, \mathfrak{M}$ are given in terms of Fourier multipliers.

$$T_m(f)(x) = \int_{\mathbb{R}^d} e^{2\pi i x \cdot \xi} m(\xi) \widehat{f}(\xi) \mathrm{d}\xi,$$
$$\mathcal{M}_m(f)(x) = \sup_{t>0} \left| T_{m(t\cdot)}(f)(x) \right|.$$

For example,

$$\mathcal{M}_{HL}: m(\xi) = \widehat{\chi_{B(0,1)}}(\xi) = \frac{J_{n/2}(|\xi|)}{|\xi|^{n/2}},$$
$$\mathcal{M}_{sph}: m(\xi) = \widehat{\mathrm{d}\sigma}(\xi) = \frac{J_{\frac{n-2}{2}}(|\xi|)}{|\xi|^{\frac{n-2}{2}}},$$
$$S_*^{\delta}: m(\xi) = (1 - |\xi|^2)_+^{\delta}, \quad t \to t^{-1},$$
$$\mathfrak{M}: m(\xi) = e^{2\pi i |\xi|^2}, \quad t \to t^{1/2}.$$

Question : For which condition, is \mathcal{M}_m bounded on $L^p(\mathbb{R}^d)$?

Abstract Theory for m; Hörmander-Mikhlin multipliers

Recall that

$$T_m(f)(x) = (m\widehat{f})^{\vee}(x),$$

$$T_m(f)(x,t) = \int_{\mathbb{R}^d} e^{2\pi i x \cdot \xi} m(t\xi) \widehat{f}(\xi) d\xi,$$

$$\mathcal{M}_m(f)(x) := \sup_{t>0} \left| T_m(f)(x,t) \right|.$$

 T_m satisfies L^p -boundedness for all $p\in(1,\infty)$ whenever

$$\sup_{j\in\mathbb{Z}} \left\| (I-\Delta)^{s/2} m(2^j \cdot)\widehat{\psi} \right\|_{L^2(\mathbb{R}^d)} = \sup_{j\in\mathbb{Z}} \left\| m(2^j \cdot)\widehat{\psi} \right\|_{L^2_s(\mathbb{R}^d)} < \infty, \quad s > \frac{d}{2}.$$
(HM)

(HM) is not sufficient for L^p -boundedness of $\mathcal{M}_m f$.

It requires for $p, q \in (0, \infty)$, $r = \min(p, 2)$

$$\left(\sum_{j} \|m(2^{j} \cdot)\widehat{\psi}\|_{L^{r}_{s}(\mathbb{R}^{d})}^{q}\right)^{1/q} < \infty, \quad s > \frac{d}{r}.$$
 (CGHS)

* (CGHS) is given by Christ-Grafakos-Honzík-Seeger('05, Math. Z., '06, Adv. Math.).

The condition (CGHS),

$$\left(\sum_{j} \|m(2^{j} \cdot)\widehat{\psi}\|_{L^{r}_{s}(\mathbb{R}^{d})}^{q}\right)^{1/q} < \infty, \quad s > \frac{d}{r}$$

cannot cover both \mathcal{M}_{sph} and $\sup_t \left| e^{it\Delta} f \right|$. Intuition for (CGHS):

$$|\partial^{\alpha} m(\xi)| \lesssim (1+|\xi|)^{-|\alpha|-\varepsilon}, \quad \varepsilon > 0, |\alpha| > \frac{d}{2}.$$

Intuition for \mathcal{M}_{sph} and $e^{it\Delta}$:

 $|\partial^{\alpha}m(\xi)|\lesssim |\xi|^{-\gamma},\quad \gamma>0,\quad \text{or even worse}.$

Motivation in Potential Theory

Let f be a twice differentiable function.

Then we have

$$\int_{\mathbb{S}^{d-1}} f(x+ty) \mathrm{d}\sigma(y) - f(x) = A_S(f)(x,t) - f(x)$$
$$= C \int_0^t \tau \Big(\int_{B(0,1)} (\Delta f)(x+ty) \mathrm{d}y \Big) d\tau,$$

which gives

$$\sup_{t>0} \left| \frac{1}{t^2} \Big(A_S(f)(x,t) - f(x) \Big) \right| \lesssim \mathcal{M}(\Delta f)(x).$$

Therefore, for f and Δf in L^p we have

$$A_S(f)(x,t) - f(x) = O(t^2).$$

Recall that $A_S(f)(x,t) - f(x) = O(1)$ whenever $f \in L^p$.

 \mathbf{Q} : $A_S(f)(x,t) - f(x) = O(t^{\alpha})$ whenever $f, \Delta^{\alpha/2} f \in L^p$ for $\alpha \in (0,2]$?

Motivation in Potential Theory

Let

$$A_S(f)(x,t) = \int_{\mathbb{R}^d} e^{2\pi i x \cdot \xi} m(t\xi) \widehat{f}(\xi) \mathrm{d}\xi, \quad m(\xi) = \widehat{\mathrm{d}\sigma}(\xi).$$

Then we have

$$\frac{1}{t^{\alpha}} \Big(A_S(f)(x,t) - f(x) \Big) = \int_{\mathbb{R}^d} e^{2\pi i x \cdot \xi} \frac{m(t\xi) - 1}{|t\xi|^{\alpha}} \widehat{\Delta^{\alpha/2} f}(\xi) \mathrm{d}\xi.$$

Therefore, our goal is to show

$$\|\sup_{t>0} |T_{m_{\alpha}(t\cdot)}f|\|_{L^{p}} \lesssim \|f\|_{L^{p}}, \quad m_{\alpha}(\xi) = \frac{m(\xi) - 1}{|\xi|^{\alpha}}$$

We also want to suggest a condition for m_{α} which guarantees such L^p boundedness.

Let *E* be a subset of $(0, \infty)$. Then we define \mathcal{M}_m^E by

$$\mathcal{M}_m^E(f)(x) := \sup_{t \in E} |T_{m(t \cdot)}(f)(x)|. \tag{1}$$

- E could be $\{2^j\}_{j\in\mathbb{Z}}$, Cator sets, etc.
- · Differentiation theorem will hold for associated dilation sets.
- We will use $\kappa = \kappa(E)$ to denote a dimension quantity.

Until explained thoroughly, please regard $\kappa(E)$ as just a dimension of E.

Let $\dim(E) \in [0,1)$ and define

$$M_{\mathbb{S}^{d-1}}^E f(x) := \sup_{t \in E} \Big| \int_{\mathbb{S}^{d-1}} f(x - ty) \, \mathrm{d}\sigma(y) \Big|.$$
⁽²⁾

Then we have

Theorem (Seeger-Wainger-Wright, 1995)

For $d \geq 2$, $\|M^E_{\mathbb{S}^{d-1}}\|_{p \to p} < \infty$, if $p > 1 + \frac{\kappa(E)}{d-1}$.

- If $\kappa(E) = 1$, then $1 + \frac{\kappa(E)}{d-1} = 1 + \frac{1}{d-1} = \frac{d}{d-1}$.
- If d=2 and $\kappa(E)<1$, then $1+\frac{\kappa(E)}{d-1}=1+\kappa(E)<2$.
- For $E \subset [1, 2]$, $L^p \to L^q$ bounds of $M^E_{\mathbb{S}^{d-1}}$ are studied by Anderson-Hughes-Roos-Seeger $(d \ge 3, 20)$, Roos-Seeger(d = 2, 23).

Theorem (Duoandikoetxea-Vargas, 1998)

- Let m be the Fourier transform of a compactly supported finite Borel measure, and E ⊂ (0,∞). Assume that |m(ξ)| ≤ C|ξ|^{-a} for some a > κ(E)/2. Then M^E_m is bounded on L^p(ℝ^d) for p > 1 + ^{κ(E)}/_{2a}.
- 2. Let $s = \lfloor d/2 \rfloor + 1$, $m \in C^{s+1}$, and $E \subset (0, \infty)$. Assume that $|\partial^{\gamma}m(\xi)| \leq C|\xi|^{-a}$ for all $|\gamma| \leq s+1$ and some $a > \kappa(E)/2$. Then \mathcal{M}_m^E is bounded on $L^p(\mathbb{R}^d)$ for

$$\frac{2d}{d+2a-\kappa(E)}$$

- By taking $a = \frac{d-1}{2}$ and $\kappa(E) \in [0, 1)$, this theorem recovers the result fo Seeger-Wainger-Wright.
- The range of *p* in the second statement seems sharp, we will introduce a result with improved regularity condition on *m*.

Result and applications;

 $E = (0, \infty)$

Main Theorem

Let X be a Banach space of functions on $\mathbb{R}^d.$ Then we define $\Sigma^2_\theta(X)$ with norm given by

$$\|f\|_{\Sigma^2_{\theta}(X)} = \left(\sum_j (2^{j\theta} \|f(2^j \cdot)\widehat{\psi}\|_X)^2\right)^{1/2}.$$

If $\theta = 0$, we simply write $\Sigma^2(X)$.

Theorem (L.-Seo, JFA, '23)
Let
$$p \in (1, \infty)$$
, $\frac{1}{p_0} = \left|\frac{1}{p} - \frac{1}{2}\right|$ and $s > \frac{d}{p_0} + \min\{\frac{1}{2}, \frac{1}{p}\}$. Then we have
 $\left\|\mathcal{M}_m f\right\|_{L^p(\mathbb{R}^d)} \lesssim \|m\|_{\Sigma^2(B^s_{p_0})} \|f\|_{L^p(\mathbb{R}^d)}$. (L-S)

* $B_p^s = B_{p,p}^s$ denotes the Besov space.

$$||f||_{B_p^s} \sim ||S_0 f||_{L^p} + \Big(\sum_{j\geq 0} (2^{js} ||\psi_j * f||_{L^p})^p\Big)^{1/p}.$$

 $\psi \in \mathscr{S}$ is chosen so that $\operatorname{supp}(\widehat{\psi}) \subset \{\frac{1}{2} < |\xi| < 2\}$ and $\sum_{j \in \mathbb{Z}} \widehat{\psi}(2^{-j}\xi) = 1$.

Example of Σ^2 space; Weighted Sobolev spaces

We introduce a weighted Sobolev space, $H^{p,\gamma}_{\theta}(\mathbb{R}^d)$.

$$\|f\|_{H^{p,\gamma}_{\theta}(\mathbb{R}^d\setminus\{0\})}^p = \sum_{l=0}^{\gamma} \int_{\mathbb{R}^d} |D^l f(x)|^p |x|^{pl+\theta-d} \mathrm{d}x.$$

By dyadic decomposition around the origin, it follows that

$$\sum_{l=0}^{\gamma} \int_{\mathbb{R}^d} |D^l f(x)|^p |x|^{pl+\theta-d} \mathrm{d}x \sim \sum_{l=0}^{\gamma} \sum_{j \in \mathbb{Z}} 2^{j\theta} \int_{\mathbb{R}^d} |D^l (f(2^j x) \widehat{\psi}(x))|^p \mathrm{d}x,$$

which yields

$$\|f\|_{H^{p,\gamma}_{\theta}(\mathbb{R}^d\setminus\{0\})} \sim \|f\|_{\Sigma^p_{\theta/p}(L^p_{\gamma})}.$$

The weighted Sobolev spaces is used to study boundary behavior of a function mostly appeared in theory of partial differential equations.

Corollary

Let $p \in (1,\infty)$ and m be of class $B_{p_0}^s(\mathbb{R}^d)$ where $s > \frac{d}{p_0} + \min\{\frac{1}{2}, \frac{1}{p}\}$. Then for any fixed $\phi_0 \in C_c^\infty(\mathbb{R}^d)$ we have

 $\|\mathcal{M}_{m\phi_0}(f)\|_{L^p(\mathbb{R}^d)} \lesssim \|m\|_{B^s_{p_0}(\mathbb{R}^d)} \|f\|_{L^p(\mathbb{R}^d)}.$

If m is of class $L^2_s(\mathbb{R}^d)$ with $s > \frac{d+1}{2}$, then $\|\mathcal{M}_{m\phi_0}\|_{L^p \to L^p}$ is bounded for any $p \in (1, \infty)$.

By the range $s > \frac{d+1}{2}$, we improve the result of Rubio de Francia(1986, Adv. Math., Duke Math. J.) which requires $m \in C_c^{[\frac{d}{2}]+2}(\mathbb{R}^d)$ for \mathcal{M}_m to be bounded on L^p .

Two conditions cannot be directly compared!

However,

when $p\leq 2$

(CGHS):

$$\sum_{j\in\mathbb{Z}} \|m(2^j\cdot)\widehat{\psi}\|_{L^r_s(\mathbb{R}^d)}^q < \infty, \quad r=p, \ s > \frac{d}{p}.$$

(L-S) :

$$\sum_{j \in \mathbb{Z}} \|m(2^j \cdot) \widehat{\psi}\|_{B^s_{p_0}(\mathbb{R}^d)}^2 < \infty, \quad \frac{1}{p_0} = \frac{1}{p} - \frac{1}{2}, \ s > \frac{d}{p} - \frac{d}{2} + \frac{1}{2}$$

There is $\frac{d-1}{2}$ gain in the sense of regularity.

• Let $\alpha \in (0,1)$ and $\beta > \frac{1}{2}$. Define

$$\mathfrak{M}_{\alpha,\beta}f = \sup_{t>0} \left| (m_{\alpha,\beta}(t\cdot)\widehat{f})^{\vee} \right|, \quad m_{\alpha,\beta}(\xi) = e^{i|\xi|^{\alpha}} m_{\beta}(\xi),$$

where m_{β} vanishes near the origin and satisfies $|\partial^{\gamma}m_{\beta}(\xi)| \leq |\xi|^{-\beta-|\gamma|}$. Then $\mathfrak{M}_{\alpha,\beta}$ satisfies L^{p} -boundedness for $\frac{d-2\beta/\alpha}{2(d-1)} < \frac{1}{p} < \frac{d-1+2\beta/\alpha}{2d}$.

Let

$$U_{\alpha,\beta}(f)(x,t) = \frac{e^{it(-\Delta)^{\alpha/2}}f(x) - f(x)}{t^{\beta}}.$$

Then for almost all $x \in \mathbb{R}^d$,

$$e^{it(-\Delta)^{\alpha/2}}f(x) - f(x) = O(t^{\beta}).$$

Applications

• Let $m \in C_{loc}^{\left[\frac{d+1}{2}\right]+1}(\mathbb{R}^d)$, m(0) = 1, and $|\partial^{\gamma}m(\xi)| \lesssim (1+|\xi|)^{-\beta}$. Then, for $\alpha \in (0,1)$ and $f \in \dot{L}^p_{\alpha}(\mathbb{R}^d)$ with $\frac{d-2(\alpha+\beta)}{2(d-1)} < \frac{1}{p} < \frac{d-1+2(\alpha+\beta)}{2d}$, we have

 $f(x) - T_{m(t \cdot)}f(x) = O(t^{\alpha})$, for almost $x \in \mathbb{R}^d$.

• For $\beta = \frac{d-1}{2}$ we have $\frac{1-2\alpha}{2(d-1)} < \frac{1}{p} < \frac{2d-2+\alpha}{2d}$ and $\widehat{d\sigma}$ satisfies $|\partial^{\gamma} \widehat{d\sigma}(\xi)| \leq (1+|\xi|)^{-\frac{d-1}{2}}$. That is, it follows that for almost every x

$$f(x) - A_S(f)(x,t) = O(t^{\alpha}),$$

whenever $f \in L^p_{\alpha}(\mathbb{R}^d)$.

* For direct computation on $d\sigma$ gives us $\alpha \in (0,2)$ case.

Result and applications; $\dim(E) \in [0, 1]$

First of all, we define the dimension quantity, $\kappa(E)$.

$$\kappa(E) := \lim_{\delta \to 0} \sup_{j \in \mathbb{Z}} \frac{\log N(E_j, \delta)}{-\log \delta},$$
(3)

where $E_j := (2^{-j}E) \cap [1,2]$, and $N(E,\delta)$ is the entropy number of E,

 $N(E,\delta) := \#\{k \in \mathbb{N} \mid E \cap [k\delta, (k+1)\delta] \neq \emptyset\} \sim \delta^{-D}.$

- Let $E = \{1 + n^{-a} \mid n = 1, 2, ... \}, a > 0$. Then $\kappa(E) = (1 + a)^{-1}$.
- For a compact E, $\kappa(E)$ equals the Minkowski dimension of E,

 $\dim_{\mathcal{M}}(E) := \inf\{a > 0 \mid \exists C > 0, \text{ such that } \forall \delta \in (0,1), N(E,\delta) \le C\delta^{-a}\}$

Theorem (L.-Seo, 2024+)

Let $p \in (1, \infty)$ and $E \subset (0, \infty)$ satisfy $\kappa(E) < 1$. Suppose that m is of class $\Sigma^2(B_{p_0}^s)$ with $1/p_0 = |1/2 - 1/p|$ and

$$s > \frac{d}{p_0} + \kappa(E) \min\left\{\frac{1}{2}, \frac{1}{p}\right\}.$$

Then \mathcal{M}_m^E is bounded on $L^p(\mathbb{R}^d)$.

- For $E = (0, \infty)$, we have $s > \frac{d}{p_0} + \min\left\{\frac{1}{2}, \frac{1}{p}\right\}$.
- We recover the result (2) of Duoandikoetxea-Vargas.

Let $m_{\alpha,\beta}(\xi) := e^{2\pi i |\xi|^{\alpha}} m_{\beta}(\xi)$, where

- $0 < \alpha < 1$ and $\beta > 0$,
- m_{β} vanishes near the origin, and

 $|\partial^{\gamma} m_{\beta}(\xi)| \lesssim |\xi|^{-\beta - |\gamma|}$ for any multi-index γ .

Then we have

$$\|\mathcal{M}_{\mathfrak{m}_{\alpha,\beta}}\|_{L^p(\mathbb{R}^d)\to L^p(\mathbb{R}^d)}<\infty,\tag{4}$$

whenever $\frac{d-2\beta/\alpha}{2(d-\kappa(E))} < \frac{1}{p} < \frac{d+2\beta/\alpha-\kappa(E)}{2d}$.

When $\kappa(E) = 1$, it follows that $\frac{d-2\beta/\alpha}{2(d-1)} < \frac{1}{p} < \frac{d+2\beta/\alpha-1}{2d}$, which is the range of p in the Applications 1

Using the estimates of the previous slide, one can obtain a convergence result of solutions to fractional Schrödinger equations:

Let $\alpha \in (0, 1)$, $\beta \in (\kappa(E)/2, 1)$. Suppose $f \in \dot{L}^p_{\alpha\beta}$ for $\frac{d-2\beta}{2(d-\kappa(E))} < \frac{1}{p} < \frac{d+2\beta-\kappa(E)}{2d}$. Then we have

$$|\mathrm{e}^{-it(-\Delta)^{\alpha/2}}f(x) - f(x)| = O(t^\beta), \quad t \to 0 \text{ on } E\,,$$

where $e^{-it(-\Delta)^{\alpha/2}}f$ denotes a solution to fractional Schrödinger(half-wave) equations with initial data f. Note that one needs $\beta > \kappa(E)/2$ for $f \in L^2_{\alpha\beta}$, which yields

$$s = \alpha \beta > \frac{\alpha \kappa(E)}{2}.$$

By this observation, we recover the convergence result of Cho-Ko-Koh-Lee('23) for $\alpha \in (0, 1)$ and $d \ge 2$:

$$\lim_{n\to\infty} \mathrm{e}^{it_n(-\Delta)^{\alpha/2}} f(x) = f(x) \quad \text{a.e. } x, \quad \forall f\in L^2_s.$$

whenever $s > \frac{\alpha \kappa(E)}{2}$ and $\dim_{\mathcal{M}}(\{t_n\}_n) = \kappa(E)$.

Sketch of Proofs

Maximal Operators and Fourier Multipliers

Result and applications; $E = (0, \infty)$

Result and applications; $\dim(E) \in [0, 1]$

Sketch of Proofs

A general strategy; the case of $E = (0, \infty)$

Dimensions and square functions; the case of $\kappa(E) \in [0,1]$

Some Fractional Calculus and Square Functions

Let us define for $\alpha \in (0,1)$

$$I_{0+}^{\alpha}f(t) := \frac{1}{\Gamma(\alpha)} \int_0^t (t-s)^{\alpha-1} f(s) \mathrm{d}s,$$
$$D_{0+}^{\alpha}F(t) := \frac{\mathrm{d}}{\mathrm{d}t} \left(I_{0+}^{1-\alpha} F \right)(t).$$

Then we have

Lemma

$$F(t) = I_{0+}^{\alpha} D_{0+}^{\alpha} F(t) + \frac{t^{\alpha}}{\Gamma(\alpha)} F(0).$$

By this lemma, we have $m(t\xi) = \frac{1}{\Gamma(\frac{1}{2}-\varepsilon)} I_{0+}^{\frac{1}{2}+\varepsilon} \Big((\cdot)^{-\frac{1}{2}-\varepsilon} \widetilde{m}(\cdot\xi) \Big)(t)$, where

$$\widetilde{m}(\xi) = m(\xi) + \left(\frac{1}{2} + \varepsilon\right) \int_0^1 \frac{m(\xi) - m(s\xi)}{(1-s)^{\frac{3}{2}+\varepsilon}} \mathrm{d}s.$$

We simply put
$$m(t\xi) = \frac{1}{\Gamma(\frac{1}{2}-\varepsilon)} I_{0+}^{\frac{1}{2}+\varepsilon} \left((\cdot)^{-\frac{1}{2}-\varepsilon} \widetilde{m}(\cdot\xi) \right)(t)$$
 in $T_{m(t\cdot)} f$.

$$\begin{split} T_{m(t\cdot)}f\Big|^2 &= \Big|\frac{1}{\Gamma(\frac{1}{2}-\varepsilon)}I^{\frac{1}{2}+\varepsilon}\big(t^{-\frac{1}{2}-\varepsilon}T_{\widetilde{m}(t\cdot)}f\big)\Big|^2\\ &= \left|\frac{1}{\Gamma(\frac{1}{2}-\varepsilon)}\int_0^t(t-s)^{-\frac{1}{2}+\varepsilon}s^{-\frac{1}{2}-\varepsilon}T_{\widetilde{m}(s\cdot)}fds\right|^2\\ &\lesssim \int_0^t(t-s)^{-1+2\varepsilon}s^{-2\varepsilon}ds\times\int_0^t\big|T_{\widetilde{m}(s\cdot)}f\big|^2\frac{ds}{s}. \end{split}$$

Thus we have

$$\left|\mathcal{M}_m f\right|^2 \lesssim \int_0^\infty \left|T_{\widetilde{m}(t\cdot)}f\right|^2 \frac{dt}{t} =: G_{\widetilde{m}}(f)^2.$$

Vector-valued operators, Embeddings, and Bilinear interpolation

· Vector-valued harmonic analysis for singular integral operators.

 $\|G_{\widetilde{m}}(f)\|_{L^2} \le \|\widetilde{m}\|_X \|f\|_{L^2}$

 $\|G_{\widetilde{m}}(f)\|_{L^{1}} \leq \|\widetilde{m}\|_{Y} \|f\|_{H^{1}}, \quad \|G_{\widetilde{m}}(f)\|_{BMO} \leq \|\widetilde{m}\|_{Y} \|f\|_{L^{\infty}}$

· Embeddings.

 $\|\widetilde{m}\|_{X} \lesssim \|m\|_{X_{1/2+\varepsilon}}, \quad \|\widetilde{m}\|_{Y} \lesssim \|m\|_{Y_{1/2+\varepsilon}}$

· Bilinear interpolation of A. P. Calderón.

 $\begin{aligned} \|B(f,g)\|_{C_0} &\leq M_0 \|f\|_{A_0} \|g\|_{B_0}, \\ \|B(f,g)\|_{C_1} &\leq M_1 \|f\|_{A_1} \|g\|_{B_1} \end{aligned}$

 \downarrow

 $\|B(f,g)\|_{[C_0,C_1]_{\theta}} \le M_0^{1-\theta} M_1^{\theta} \|f\|_{[A_0,A_1]_{\theta}} \|g\|_{[B_0,B_1]_{\theta}}.$

Vector-valued harmonic analysis

Let $T_m(f)(x,t)$ be an $L^2(\mathbb{R}_+, \frac{dt}{t})$ -valued operator and $\mathcal{H} = L^2(\mathbb{R}_+, \frac{dt}{t})$.

- Then $L^2(\mathcal{H}) \to L^2(\mathcal{H})$ operator norm of T_m is

$$\sup_{\xi \neq 0} \left(\int_0^\infty |m(t\xi)|^2 \frac{\mathrm{d}t}{t} \right)^{1/2} = \|m\|_{L^\infty(\mathcal{H})}.$$

• For $H^1 \to L^1$ boundedness, we have for $\beta > \frac{d}{2}$

$$\int_{|x|>2|y|} \left(\int_0^\infty |K_t(x-y) - K_t(x)|^2 \frac{\mathrm{d}t}{t} \right)^{1/2} \mathrm{d}x \lesssim \sup_{j \in \mathbb{Z}} \|m(2^j t\xi)\widehat{\psi}(\xi)\|_{L^2_{\beta}(\mathcal{H})}.$$

For each operator norms we have

$$\|m\|_{L^{\infty}(\mathcal{H})} \lesssim \left(\sum_{j \in \mathbb{Z}} \|m(2^{j} \cdot)\widehat{\psi}(\cdot)\|_{L^{\infty}}^{2}\right)^{1/2} = \|m\|_{\Sigma^{2}(L^{\infty})},$$
$$\sup_{j \in \mathbb{Z}} \|m(2^{j}t\xi)\widehat{\psi}(\xi)\|_{L^{2}_{\beta}(\mathcal{H})} \lesssim \|m\|_{\Sigma^{2}(L^{2}_{\beta})}.$$

From the previous slide, we have

$$\begin{split} \|G_{\widetilde{m}}\|_{L^2 \to L^2} &\leq \|\widetilde{m}\|_{\Sigma^2(C^{0,\varepsilon})},\\ \text{and} \quad \|G_{\widetilde{m}}\|_{H^1 \to L^1}, \|G_{\widetilde{m}}\|_{L^\infty \to BMO} \leq \|\widetilde{m}\|_{\Sigma^2(L^2_\beta)}, \quad \beta > \frac{d}{2}. \end{split}$$

For these spaces, we have shown that

$$\begin{split} \|\widetilde{m}\|_{\Sigma^2(C^{0,\varepsilon})} &\lesssim \|m\|_{\Sigma^2(C^{0,\frac{1}{2}+\varepsilon})}, \\ \|\widetilde{m}\|_{\Sigma^2(L^2_{\frac{d}{2}+\varepsilon})} &\lesssim \|m\|_{\Sigma^2(L^2_{\frac{d+1}{2}+\varepsilon})} \end{split}$$

That is, the mapping $m \to \widetilde{m}$ yields $\frac{1}{2}$ -derivative in terms of $\Sigma^2(X)$ spaces.

Putting all together

- 1. Control $\mathcal{M}_m(f)$ by $G_{\widetilde{m}}f$.
- 2. Consider $G_{\widetilde{m}}f$ as a bilinear map B(m, f).

3. Put $X = \Sigma^2(C^{0,\frac{1}{2}+\varepsilon}), Y = \Sigma^2(L^2_{\frac{d}{2}+\frac{1}{2}+\varepsilon})$, which gives

$$\begin{split} \|\mathcal{M}_m f\|_{L^2} &\lesssim \|m\|_X \|f\|_{L^2}, \\ \|\mathcal{M}_m f\|_{L^1} &\lesssim \|m\|_Y \|f\|_{H^1}, \quad \text{and} \quad \|\mathcal{M}_m f\|_{BMO} \lesssim \|m\|_Y \|f\|_{L^{\infty}}. \end{split}$$

4. Apply Calderón's bilinear interpolation.

$$[\Sigma^2(C^{0,\frac{1}{2}+\varepsilon}), \Sigma^2(L^2_{\frac{d+1}{2}+\varepsilon})]_{\theta} = \Sigma^2\Big([C^{0,\frac{1}{2}+\varepsilon}, L^2_{\frac{d+1}{2}+\varepsilon}]_{\theta}\Big)$$

 $\begin{aligned} \text{Taking } \theta &= 2 \left| \frac{1}{p} - \frac{1}{2} \right| \text{ yields } [C^{0, \frac{1}{2} + \varepsilon}, L^2_{\frac{d+1}{2} + \varepsilon}]_{\theta} = B^s_{p_0} \\ \text{with } s &> \frac{d}{p_0} + \frac{1}{2} \text{ and } \frac{1}{p_0} = |\frac{1}{p} - \frac{1}{2}|. \\ \text{5. } \|\mathcal{M}_m f\|_{L^p(\mathbb{R}^d)} \lesssim \|m\|_{\Sigma^2(B^s_{p_0})} \|f\|_{L^p(\mathbb{R}^d)}. \end{aligned}$

Maximal Operators and Fourier Multipliers

Result and applications; $E = (0, \infty)$

Result and applications; $\dim(E) \in [0, 1]$

Sketch of Proofs

A general strategy; the case of $E = (0, \infty)$

Dimensions and square functions; the case of $\kappa(E) \in [0,1]$

We call $\kappa(E)$ the Assouad dimension of E, $\dim_{AS}(E)$.

Definition (Aikawa dimension)

Let $X = (X, \mu, d)$ be a general metric space and its doubling dimension is n. For $E \subset X$, let G(E) be the set of t > 0 for which there exists a constant c_t such that

$$\int_{B(x,r)} \operatorname{dist}(y,E)^{t-n} \, \mathrm{d}\mu \le c_t r^{t-n} \mu(B(x,r))$$

for every $x \in E$ and all $r \in (0, \operatorname{diam}(E))$. Then the Aikawa dimension of E is defined to be $\operatorname{dim}_{AI}(E) = \inf G(E)$.

Theorem

Let *X* be a *Q*-regular metric measure space, and $E \subset X$. Then $\dim_{AS}(E) = \dim_{AI}(E)$.

A measure μ is Q-regular for Q > 1, if there is a constant $c_Q \ge 1$ such that

$$c_Q^{-1}r^Q \le \mu(B(x,r)) \le c_Q r^Q, \quad \forall x \in X, r \in (0, \operatorname{diam}(X)).$$

Then we have

- $\dim_{AS}(E) \leq \dim_{AI}(E)$ holds for a doubling metric measure space.
- $\dim_{AI}(E) \leq \dim_{AS}(E)$ holds for a *Q*-regular metric measure space.

Bounds of \mathcal{M}_m^E using square functions

Lemma (Lemma 3.1, L.-Seo, '24+)

For $E \subset (0, \infty)$, let $E_j = 2^{-j}E \cap [1, 2]$. Suppose $\dim_{AS}(E) \leq D_0$ for some $D_0 \in (0, 1]$. Then for $\alpha, \beta \in \mathbb{R}$ with $\frac{D_0}{2} < \alpha < \beta \leq 1$ and $F \in C_{loc}([0, \infty)) \cap C_{loc}^{0, \beta}((0, \infty))$, we have

$$\sup_{t \in E} |F(t)|^2 \lesssim \sum_{j \in \mathbb{Z}} \int_1^2 dist(s, E_j)^{-1+2\beta} |D_{0+}^{\alpha} F_j(s)|^2 \, \mathrm{d}s, \quad F_j(s) = F(2^j s).$$

By taking $F(s) = T_{m(s)}f$, we obtain a square function $\mathcal{G}^{E}(m, f)$.

Lemma (Lemma 3.2, L.-Seo, '24+)

Let E be a non-empty set in [1, 2]. For any $a \in (0, 1)$, we have

$$\sup_{0<\delta\leq 1} \delta^a N(E,\delta) \lesssim_a \int_1^2 dist(t,E)^{-1+a} \, \mathrm{d}t \lesssim_a 1 + \int_0^1 \lambda^a N(E,\lambda) \, \frac{\mathrm{d}\lambda}{\lambda}.$$

Following general strategy, one can obtain

- 1. $\|\mathcal{G}^{E}(m,f)\|_{L^{1}} \lesssim \|m\|_{\Sigma^{2}(L^{2}_{d/2+\alpha})} \|f\|_{H^{1}},$
- **2.** $\|\mathcal{G}^{E}(m,f)\|_{BMO} \lesssim \|m\|_{\Sigma^{2}(L^{2}_{d/2+\alpha})} \|f\|_{L^{\infty}},$
- **3.** $\|\mathcal{G}^{E}(m,f)\|_{L^{2}} \lesssim \|m\|_{\Sigma^{2}(C^{0,\alpha})}\|f\|_{L^{2}}.$

We apply bilinear interpolation on $\left(1,3\right)$ and $\left(2,3\right)$ to prove the theorem.

Thank you so much!