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Maximal Operators and
Fourier Multipliers



Maximal Operators in Harmonic analysis

• Hardy-Littlewood maximal function:

MHLf(x) = sup
t>0

1

|B(x, t)|

∫
B(x,t)

|f(y)|dy.

• Spherical maximal function:

Msphf(x) = sup
t>0

∣∣∣ ∫
Sd−1

f(x− ty)dσ(y)
∣∣∣.

• Maximal Bochner-Riesz operator:

Sδ∗(f)(x) = sup
t>0

∣∣∣(mδ(·/t)f̂ )̌ (x)
∣∣∣, mδ(ξ) =

(
1− |ξ|2

)δ
+
.

• Maximal operator associated with Schrödinger equation:

M(f)(x) = sup
t>0

∣∣∣eit∆f(x)
∣∣∣

• etc...
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Lp boundedness and Pointwise Convergence

• ‖MHLf‖Lp(Rd) . ‖f‖Lp(Rd), 1 < p ≤ ∞.
=>

∫
B(0,1)

f(x+ ty)dy → f(x) as t→ 0 for almost every x ∈ Rd

whenever f ∈ L1
loc.

• ‖Msphf‖Lp(Rd) . ‖f‖Lp(Rd),
d
d−1 < p ≤ ∞, d ≥ 2.

=>
∫
Sd−1 f(x+ ty)dσ(y)→ f(x) as t→ 0 for almost every x ∈ Rd

whenever f ∈ Lp.
• ‖Sδ∗(f)‖Lp(Rd) . ‖f‖Lp(Rd), δ > (d− 1)

∣∣∣ 1p − 1
2

∣∣∣.
Results :

• p ≥ 2; Carbery(d = 2, Duke Math. J. 1983), Lee(d ≥ 3, Duke Math. J. ’04),
Gan-Jing-Wu(d = 3, arXiv ’21), Gan-Oh-Wu(d ≥ 4, arXiv ’21),

• p ≤ 2; Tao(d ≥ 3, Indiana Univ. Math. J. 1998), and Li-Wu(d = 2, Math.
Ann. ’20, arXiv ’24).

=> Sδt (f)(x)→ f(x) as t→∞ for almost every x ∈ Rd.
* The convergence itself(p ≥ 2) is fully resolved by Carbery-Rubio de
Francia-Vega, 1988.
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Lp boundedness and Pointwise Convergence

eit∆f(x) =

∫
Rd
e2πix·ξe−it(2π|ξ|)

2

f̂(ξ)dξ.

1

i
∂tu = ∆u; u(x, 0) = f(x); x ∈ Rd, t ∈ (0,∞).

• Sharp L2 maximal estimates∥∥∥M(f)
∥∥∥
L2(B(0,1))

=
∥∥∥ sup
t∈(0,1]

|eit∆f |
∥∥∥
L2(B(0,1))

≤ C(s)‖f‖Hs(Rd), s >
d

2(d+ 1)
.

• (PWC)

lim
t→0

eit∆f(x) = f(x), a.e. x ∈ Rd,

whenever f ∈ Hs(Rd) and s > d
2(d+1) .

* s ≥ d
2(d+1) is necessary for (PWC) due to J. Bourgain.
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Maximal operators and Fourier multipliers

AllMHL,Msph, S
δ
∗ ,M are given in terms of Fourier multipliers.

Tm(f)(x) =

∫
Rd
e2πix·ξm(ξ)f̂(ξ)dξ,

Mm(f)(x) = sup
t>0

∣∣∣Tm(t·)(f)(x)
∣∣∣.

For example,

MHL : m(ξ) = χ̂B(0,1)(ξ) =
Jn/2(|ξ|)
|ξ|n/2

,

Msph : m(ξ) = d̂σ(ξ) =
Jn−2

2
(|ξ|)

|ξ|n−2
2

,

Sδ∗ : m(ξ) = (1− |ξ|2)δ+, t→ t−1,

M : m(ξ) = e2πi|ξ|2 , t→ t1/2.

Question : For which condition, isMm bounded on Lp(Rd)?

6



Abstract Theory for m; Hörmander-Mikhlin multipliers

Recall that

Tm(f)(x) = (mf̂ )∨(x),

Tm(f)(x, t) =

∫
Rd
e2πix·ξm(tξ)f̂(ξ)dξ,

Mm(f)(x) := sup
t>0

∣∣∣Tm(f)(x, t)
∣∣∣.

Tm satisfies Lp-boundedness for all p ∈ (1,∞) whenever

sup
j∈Z

∥∥∥(I −∆)s/2m(2j ·)ψ̂
∥∥∥
L2(Rd)

= sup
j∈Z

∥∥∥m(2j ·)ψ̂
∥∥∥
L2
s(Rd)

<∞, s >
d

2
. (HM)

(HM) is not sufficient for Lp-boundedness ofMmf .

It requires for p, q ∈ (0,∞), r = min(p, 2)(∑
j

‖m(2j ·)ψ̂‖q
Lrs(Rd)

)1/q

<∞, s >
d

r
. (CGHS)

* (CGHS) is given by Christ-Grafakos-Honzík-Seeger(’05, Math. Z., ’06, Adv.
Math.).
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Remark on (CGHS)

The condition (CGHS),(∑
j

‖m(2j ·)ψ̂‖q
Lrs(Rd)

)1/q

<∞, s >
d

r

cannot cover bothMsph and supt

∣∣∣eit∆f ∣∣∣.
Intuition for (CGHS):

|∂αm(ξ)| . (1 + |ξ|)−|α|−ε, ε > 0, |α| > d

2
.

Intuition forMsph and eit∆ :

|∂αm(ξ)| . |ξ|−γ , γ > 0, or even worse.
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Motivation in Potential Theory

Let f be a twice differentiable function.

Then we have∫
Sd−1

f(x+ ty)dσ(y)− f(x) = AS(f)(x, t)− f(x)

= C

∫ t

0

τ
(∫

B(0,1)

(∆f)(x+ ty)dy
)
dτ,

which gives

sup
t>0

∣∣∣ 1

t2

(
AS(f)(x, t)− f(x)

)∣∣∣ .M(∆f)(x).

Therefore, for f and ∆f in Lp we have

AS(f)(x, t)− f(x) = O(t2).

Recall that AS(f)(x, t)− f(x) = O(1) whenever f ∈ Lp.

Q : AS(f)(x, t)− f(x) = O(tα) whenever f,∆α/2f ∈ Lp for α ∈ (0, 2]?
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Motivation in Potential Theory

Let

AS(f)(x, t) =

∫
Rd
e2πix·ξm(tξ)f̂(ξ)dξ, m(ξ) = d̂σ(ξ).

Then we have

1

tα

(
AS(f)(x, t)− f(x)

)
=

∫
Rd
e2πix·ξm(tξ)− 1

|tξ|α
∆̂α/2f(ξ)dξ.

Therefore, our goal is to show

‖ sup
t>0
|Tmα(t·)f |‖Lp . ‖f‖Lp , mα(ξ) =

m(ξ)− 1

|ξ|α

We also want to suggest a condition for mα which guarantees such Lp

boundedness.
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Maximal operators with dilation sets E ⊂ (0,∞)

Let E be a subset of (0,∞). Then we defineME
m by

ME
m(f)(x) := sup

t∈E
|Tm(t·)(f)(x)|. (1)

• E could be {2j}j∈Z, Cator sets, etc.

• Differentiation theorem will hold for associated dilation sets.

• We will use κ = κ(E) to denote a dimension quantity.

Until explained thoroughly, please regard κ(E) as just a dimension of E.
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Spherical averages with dilation in E

Let dim(E) ∈ [0, 1) and define

ME
Sd−1f(x) := sup

t∈E

∣∣∣ ∫
Sd−1

f(x− ty) dσ(y)
∣∣∣. (2)

Then we have

Theorem (Seeger-Wainger-Wright, 1995)

For d ≥ 2, ‖ME
Sd−1‖p→p <∞, if p > 1 + κ(E)

d−1 .

• If κ(E) = 1, then 1 + κ(E)
d−1 = 1 + 1

d−1 = d
d−1 .

• If d = 2 and κ(E) < 1, then 1 + κ(E)
d−1 = 1 + κ(E) < 2.

• For E ⊂ [1, 2], Lp → Lq bounds of ME
Sd−1 are studied by

Anderson-Hughes-Roos-Seeger(d ≥ 3, ’20), Roos-Seeger(d = 2, ’23).
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Averages over measures and Fourier multipliers

Theorem (Duoandikoetxea-Vargas, 1998)

1. Let m be the Fourier transform of a compactly supported finite Borel
measure, and E ⊂ (0,∞). Assume that |m(ξ)| ≤ C|ξ|−a for some
a > κ(E)/2. ThenME

m is bounded on Lp(Rd) for p > 1 + κ(E)
2a .

2. Let s = [d/2] + 1, m ∈ Cs+1, and E ⊂ (0,∞). Assume that
|∂γm(ξ)| ≤ C|ξ|−a for all |γ| ≤ s+ 1 and some a > κ(E)/2. ThenME

m is
bounded on Lp(Rd) for

2d

d+ 2a− κ(E)
< p < 2

d− κ(E)

d− 2a
.

• By taking a = d−1
2 and κ(E) ∈ [0, 1), this theorem recovers the result fo

Seeger-Wainger-Wright.

• The range of p in the second statement seems sharp, we will introduce a
result with improved regularity condition on m.
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Result and applications;
E = (0,∞)



Main Theorem

Let X be a Banach space of functions on Rd. Then we define Σ2
θ(X) with

norm given by

‖f‖Σ2
θ(X) =

(∑
j

(2jθ‖f(2j ·)ψ̂‖X)2
)1/2

.

If θ = 0, we simply write Σ2(X).

Theorem (L.-Seo, JFA, ’23)

Let p ∈ (1,∞), 1
p0

=
∣∣∣ 1p − 1

2

∣∣∣ and s > d
p0

+ min{ 1
2 ,

1
p}. Then we have∥∥∥Mmf

∥∥∥
Lp(Rd)

. ‖m‖Σ2(Bsp0
)‖f‖Lp(Rd). (L-S)

* Bsp = Bsp,p denotes the Besov space.

‖f‖Bsp ∼ ‖S0f‖Lp +
(∑
j≥0

(2js‖ψj ∗ f‖Lp)p
)1/p

.

ψ ∈ S is chosen so that supp(ψ̂) ⊂ { 1
2 < |ξ| < 2} and

∑
j∈Z ψ̂(2−jξ) = 1. 14



Example of Σ2 space; Weighted Sobolev spaces

We introduce a weighted Sobolev space, Hp,γ
θ (Rd).

‖f‖p
Hp,γθ (Rd\{0}) =

γ∑
l=0

∫
Rd
|Dlf(x)|p|x|pl+θ−ddx.

By dyadic decomposition around the origin, it follows that

γ∑
l=0

∫
Rd
|Dlf(x)|p|x|pl+θ−ddx ∼

γ∑
l=0

∑
j∈Z

2jθ
∫
Rd
|Dl(f(2jx)ψ̂(x))|pdx,

which yields
‖f‖Hp,γθ (Rd\{0}) ∼ ‖f‖Σp

θ/p
(Lpγ).

The weighted Sobolev spaces is used to study boundary behavior of a
function mostly appeared in theory of partial differential equations.
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Regularity near the origin

Corollary

Let p ∈ (1,∞) and m be of class Bsp0(Rd) where s > d
p0

+ min{ 1
2 ,

1
p}. Then

for any fixed φ0 ∈ C∞c (Rd) we have

‖Mmφ0
(f)‖Lp(Rd) . ‖m‖Bsp0 (Rd)‖f‖Lp(Rd).

If m is of class L2
s(Rd) with s > d+1

2 , then ‖Mmφ0
‖Lp→Lp is bounded for any

p ∈ (1,∞).

By the range s > d+1
2 , we improve the result of Rubio de Francia(1986, Adv.

Math., Duke Math. J.) which requires m ∈ C [ d2 ]+2
c (Rd) forMm to be bounded

on Lp.
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(CGHS) and (L-S)

Two conditions cannot be directly compared!

However,

when p ≤ 2

(CGHS) : ∑
j∈Z
‖m(2j ·)ψ̂‖q

Lrs(Rd)
<∞, r = p, s >

d

p
.

(L-S) : ∑
j∈Z
‖m(2j ·)ψ̂‖2Bsp0 (Rd) <∞,

1

p0
=

1

p
− 1

2
, s >

d

p
− d

2
+

1

2
.

There is d−1
2 gain in the sense of regularity.
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Applications

• Let α ∈ (0, 1) and β > 1
2 . Define

Mα,βf = sup
t>0

∣∣∣(mα,β(t·)f̂)∨
∣∣∣, mα,β(ξ) = ei|ξ|

α

mβ(ξ),

where mβ vanishes near the origin and satisfies |∂γmβ(ξ)| . |ξ|−β−|γ|.
Then Mα,β satisfies Lp-boundedness for d−2β/α

2(d−1) < 1
p <

d−1+2β/α
2d .

• Let

Uα,β(f)(x, t) =
eit(−∆)α/2f(x)− f(x)

tβ
.

Then for almost all x ∈ Rd,

eit(−∆)α/2f(x)− f(x) = O(tβ).
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Applications

• Let m ∈ C [ d+1
2 ]+1

loc (Rd), m(0) = 1, and |∂γm(ξ)| . (1 + |ξ|)−β . Then, for
α ∈ (0, 1) and f ∈ L̇pα(Rd) with d−2(α+β)

2(d−1) < 1
p <

d−1+2(α+β)
2d , we have

f(x)− Tm(t·)f(x) = O(tα), for almost x ∈ Rd.

• For β = d−1
2 we have 1−2α

2(d−1) <
1
p <

2d−2+α
2d

and d̂σ satisfies |∂γ d̂σ(ξ)| . (1 + |ξ|)− d−1
2 .

That is, it follows that for almost every x

f(x)−AS(f)(x, t) = O(tα),

whenever f ∈ Lpα(Rd).

* For direct computation on dσ gives us α ∈ (0, 2) case.
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Result and applications;
dim(E) ∈ [0, 1]



First of all, we define the dimension quantity, κ(E).

κ(E) := lim
δ→0

sup
j∈Z

logN(Ej , δ)

− log δ
, (3)

where Ej := (2−jE) ∩ [1, 2], and N(E, δ) is the entropy number of E,

N(E, δ) := #{k ∈ N | E ∩ [kδ, (k + 1)δ] 6= ∅}∼ δ−D.

• Let E = {1 + n−a | n = 1, 2, . . . }, a > 0. Then κ(E) = (1 + a)−1.

• For a compact E, κ(E) equals the Minkowski dimension of E,

dimM(E) := inf{a > 0 | ∃C > 0, such that ∀δ ∈ (0, 1), N(E, δ) ≤ Cδ−a}
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Main result

Theorem (L.-Seo, 2024+)
Let p ∈ (1,∞) and E ⊂ (0,∞) satisfy κ(E) < 1. Suppose that m is of class
Σ2(Bsp0) with 1/p0 = |1/2− 1/p| and

s >
d

p0
+ κ(E) min

{1

2
,

1

p

}
.

ThenME
m is bounded on Lp(Rd).

• For E = (0,∞), we have s > d
p0

+ min
{

1
2 ,

1
p

}
.

• We recover the result (2) of Duoandikoetxea-Vargas.
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A pointwise convergence result

Let mα,β(ξ) := e2πi|ξ|αmβ(ξ), where

• 0 < α < 1 and β > 0,

• mβ vanishes near the origin, and

|∂γmβ(ξ)| . |ξ|−β−|γ| for any multi-index γ .

Then we have

‖Mmα,β‖Lp(Rd)→Lp(Rd) <∞, (4)

whenever d−2β/α
2(d−κ(E)) <

1
p <

d+2β/α−κ(E)
2d .

When κ(E) = 1, it follows that d−2β/α
2(d−1) < 1

p <
d+2β/α−1

2d , which is the range of
p in the Applications 1
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Using the estimates of the previous slide, one can obtain a convergence
result of solutions to fractional Schrödinger equations:

Let α ∈ (0, 1), β ∈
(
κ(E)/2, 1

)
. Suppose f ∈ L̇pαβ for

d−2β
2(d−κ(E)) <

1
p <

d+2β−κ(E)
2d . Then we have

|e−it(−∆)α/2f(x)− f(x)| = O(tβ), t→ 0 on E ,

where e−it(−∆)α/2f denotes a solution to fractional Schrödinger(half-wave)
equations with initial data f . Note that one needs β > κ(E)/2 for f ∈ L2

αβ ,
which yields

s = αβ >
ακ(E)

2
.

By this observation, we recover the convergence result of
Cho-Ko-Koh-Lee(’23) for α ∈ (0, 1) and d ≥ 2:

lim
n→∞

eitn(−∆)α/2f(x) = f(x) a.e. x, ∀f ∈ L2
s,

whenever s > ακ(E)
2 and dimM({tn}n) = κ(E).
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Some Fractional Calculus and Square Functions

Let us define for α ∈ (0, 1)

Iα0+f(t) :=
1

Γ(α)

∫ t

0

(t− s)α−1f(s)ds,

Dα
0+F (t) :=

d

dt

(
I1−α
0+ F

)
(t).

Then we have

Lemma

F (t) = Iα0+D
α
0+F (t) +

tα

Γ(α)
F (0).

By this lemma, we have m(tξ) = 1
Γ( 1

2−ε)
I

1
2 +ε
0+

(
(·)− 1

2−εm̃(·ξ)
)

(t),

where

m̃(ξ) = m(ξ) +
(1

2
+ ε
)∫ 1

0

m(ξ)−m(sξ)

(1− s) 3
2 +ε

ds.
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We simply put m(tξ) = 1
Γ( 1

2−ε)
I

1
2 +ε
0+

(
(·)− 1

2−εm̃(·ξ)
)

(t) in Tm(t·)f .

∣∣Tm(t·)f
∣∣2 =

∣∣ 1

Γ( 1
2 − ε)

I
1
2 +ε
(
t−

1
2−εTm̃(t·)f

)∣∣2
=

∣∣∣∣ 1

Γ( 1
2 − ε)

∫ t

0

(t− s)− 1
2 +εs−

1
2−εTm̃(s·)fds

∣∣∣∣2
.
∫ t

0

(t− s)−1+2εs−2εds×
∫ t

0

∣∣Tm̃(s·)f
∣∣2 ds
s
.

Thus we have ∣∣Mmf |2 .
∫ ∞

0

∣∣Tm̃(t·)f
∣∣2 dt
t

=: Gm̃(f)2.
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Vector-valued operators, Embeddings, and Bilinear interpolation

• Vector-valued harmonic analysis for singular integral operators.

‖Gm̃(f)‖L2 ≤ ‖m̃‖X‖f‖L2

‖Gm̃(f)‖L1 ≤ ‖m̃‖Y ‖f‖H1 , ‖Gm̃(f)‖BMO ≤ ‖m̃‖Y ‖f‖L∞

• Embeddings.

‖m̃‖X . ‖m‖X1/2+ε
, ‖m̃‖Y . ‖m‖Y1/2+ε

• Bilinear interpolation of A. P. Calderón.

‖B(f, g)‖C0
≤M0‖f‖A0

‖g‖B0
,

‖B(f, g)‖C1
≤M1‖f‖A1

‖g‖B1

↓

‖B(f, g)‖[C0,C1]θ ≤M
1−θ
0 Mθ

1 ‖f‖[A0,A1]θ‖g‖[B0,B1]θ .
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Vector-valued harmonic analysis

Let Tm(f)(x, t) be an L2(R+,
dt
t )-valued operator and H = L2(R+,

dt
t ).

• Then L2(H)→ L2(H) operator norm of Tm is

sup
ξ 6=0

(∫ ∞
0

|m(tξ)|2 dt

t

)1/2

= ‖m‖L∞(H).

• For H1 → L1 boundedness, we have for β > d
2

∫
|x|>2|y|

(∫ ∞
0

|Kt(x− y)−Kt(x)|2 dt

t

)1/2

dx . sup
j∈Z
‖m(2jtξ)ψ̂(ξ)‖L2

β(H).

For each operator norms we have

‖m‖L∞(H) .
(∑
j∈Z
‖m(2j ·)ψ̂(·)‖2L∞

)1/2

= ‖m‖Σ2(L∞),

sup
j∈Z
‖m(2jtξ)ψ̂(ξ)‖L2

β(H) . ‖m‖Σ2(L2
β).
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Embeddings

From the previous slide, we have

‖Gm̃‖L2→L2 ≤ ‖m̃‖Σ2(C0,ε),

and ‖Gm̃‖H1→L1 , ‖Gm̃‖L∞→BMO ≤ ‖m̃‖Σ2(L2
β), β >

d

2
.

For these spaces, we have shown that

‖m̃‖Σ2(C0,ε) . ‖m‖Σ2(C0, 1
2
+ε)
,

‖m̃‖Σ2(L2
d
2
+ε

) . ‖m‖Σ2(L2
d+1
2

+ε
)

That is, the mapping m→ m̃ yields 1
2 -derivative in terms of Σ2(X) spaces.
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Putting all together

1. ControlMm(f) by Gm̃f .

2. Consider Gm̃f as a bilinear map B(m, f).

3. Put X = Σ2(C0, 12 +ε), Y = Σ2(L2
d
2 + 1

2 +ε
), which gives

‖Mmf‖L2 . ‖m‖X‖f‖L2 ,

‖Mmf‖L1 . ‖m‖Y ‖f‖H1 , and ‖Mmf‖BMO . ‖m‖Y ‖f‖L∞ .

4. Apply Calderón’s bilinear interpolation.

[Σ2(C0, 12 +ε),Σ2(L2
d+1
2 +ε

)]θ = Σ2
(

[C0, 12 +ε, L2
d+1
2 +ε

]θ

)
Taking θ = 2

∣∣∣ 1p − 1
2

∣∣∣ yields [C0, 12 +ε, L2
d+1
2 +ε

]θ = Bsp0

with s > d
p0

+ 1
2 and 1

p0
= | 1p −

1
2 |.

5. ‖Mmf‖Lp(Rd) . ‖m‖Σ2(Bsp0
)‖f‖Lp(Rd).
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The Assouad & Aikawa dimensions

We call κ(E) the Assouad dimension of E, dimAS(E).

Definition (Aikawa dimension)
Let X = (X,µ, d) be a general metric space and its doubling dimension is
n. For E ⊂ X, let G(E) be the set of t > 0 for which there exists a constant
ct such that ∫

B(x,r)

dist(y,E)t−n dµ ≤ ctrt−nµ(B(x, r))

for every x ∈ E and all r ∈ (0, diam(E)). Then the Aikawa dimension of E is
defined to be dimAI(E) = inf G(E).
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Theorem
Let X be a Q-regular metric measure space, and E ⊂ X. Then
dimAS(E) = dimAI(E).

A measure µ is Q-regular for Q > 1, if there is a constant cQ ≥ 1 such that

c−1
Q rQ ≤ µ(B(x, r)) ≤ cQrQ, ∀x ∈ X, r ∈ (0, diam(X)).

Then we have

• dimAS(E) ≤ dimAI(E) holds for a doubling metric measure space.

• dimAI(E) ≤ dimAS(E) holds for a Q-regular metric measure space.
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Bounds ofME
m using square functions

Lemma (Lemma 3.1, L.-Seo, ’24+)

For E ⊂ (0,∞), let Ej = 2−jE ∩ [1, 2]. Suppose dimAS(E) ≤ D0 for some
D0 ∈ (0, 1]. Then for α, β ∈ R with D0

2 < α < β ≤ 1 and
F ∈ Cloc([0,∞)) ∩ C0,β

loc ((0,∞)), we have

sup
t∈E
|F (t)|2 .

∑
j∈Z

∫ 2

1

dist(s, Ej)−1+2β |Dα
0+Fj(s)|2 ds, Fj(s) = F (2js).

By taking F (s) = Tm(s)f , we obtain a square function GE(m, f).

Lemma (Lemma 3.2, L.-Seo, ’24+)
Let E be a non-empty set in [1, 2]. For any a ∈ (0, 1), we have

sup
0<δ≤1

δaN(E, δ) .a

∫ 2

1

dist(t, E)−1+a dt .a 1 +

∫ 1

0

λaN(E, λ)
dλ

λ
.
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Following general strategy, one can obtain

1. ‖GE(m, f)‖L1 . ‖m‖Σ2(L2
d/2+α

)‖f‖H1 ,

2. ‖GE(m, f)‖BMO . ‖m‖Σ2(L2
d/2+α

)‖f‖L∞ ,

3. ‖GE(m, f)‖L2 . ‖m‖Σ2(C0,α)‖f‖L2 .

We apply bilinear interpolation on (1, 3) and (2, 3) to prove the theorem.
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Thank you so much!
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