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Elliptic equations

Background: Harmonic measure

Consider a bounded and simply connected domain Ω ⊂ C. By Perron’s
method, there exists for each f ∈ C (∂Ω) a function uf ∈ C (Ω) such that

−∆u(z) = 0, z ∈ Ω

lim
z→ζ

u(z) = f (ζ), ζ ∈ ∂Ω.

By maximum principle, for any z ∈ Ω, the mapping f 7→ uf (z) is a positive
bounded linear functional. The Radon measure

ωz
Ω(E ) = u1E (z)

is called the harmonic measure with pole at z .
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Elliptic equations

Probabilistic interpretation: Let (X , µ) be a probability space and
B : X × [0,∞)→ Ω a Brownian motion starting at z ∈ Ω. Then

ωz
Ω(E ) = µ({x ∈ X : B(x , τ) ∈ E}),

where τ = inf{t ∈ [0,∞) : B(x , t) /∈ Ω}.
Probability of the first exit through E .

Change of pole: If z ,w ∈ Ω, then there is a constant C (z ,w) such that
for all Borel sets E ⊂ ∂Ω

1

C (z ,w)
ωz

Ω(E ) ≤ ωw
Ω (E ) ≤ C (z ,w)ωz

Ω(E ).

Measure theoretic properties do not depend (much) on z .
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Elliptic equations

Classical results on plane

I The harmonic measure ωz
Ω is a constant multiple of arc-length

measure if and only if Ω = B(z ,R) for some R > 0.

I All the harmonic measures ωz
Ω and ωz ′

C\Ω are doubling if and only if

∂Ω is a quasicircle (Jerison and Kenig 1982).

I Assume ∂Ω is a quasicircle. The harmonic measures
{ωϕ(B(0,r)) : 0 < r < 1} are A∞ w.r.t. arclength measure with uniform
constants if and only if Ω is a chord-arc domain (corollary of work of
several authors, book of Garnett–Marshall).

Further, Dirichlet problem (non-tangential a.e. limits)

is solvable in Lp(∂Ω) iff every ωz
Ω is in RHp′(∂Ω).

In particular, it is solvable for some p ∈ (1,∞) if ωz
Ω ∈ A∞.
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Elliptic equations

Elliptic equations

Divergence form elliptic equations

divA∇u = 0, in Ω

u = g , on ∂Ω

with A : Ω→ Rn×n satisfying

I condition on boundedness and measurability;

I ellipticity condition: there is M0 > 0 such that for all ξ ∈ Rn

inf
x∈Ω

A(x)ξ · ξ ≥ M0|ξ|2;

I something more.

A = I in rough domains ∼ rough A in smooth domains
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Elliptic equations

Dahlberg–Kenig–Stein pullback

Consider an L-Lipschitz function F : Rn → R and a domain
Ω = {x ∈ Rn+1 : xn+1 > F (x1, . . . , xn)}.

Let θ ∈ C∞c (Rn) be even,
non-negative, ‖θ‖1 = 1; and set θt(x) = t−nθ(x/t). For c > 0, set for
x ∈ Rn

ρ(x , t) = (x1, . . . , xn, ct + θt ∗ F (x)).

Then for c large enough

I ρ is an injection Rn+1
+ → Ω;

I the pull back of Laplacian under ρ is divA∇· (for some A);

I it holds |∇A(x , t)| ≤ C/t;

I t|∇A(x , t)|2 dxdt is Carleson measure.
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Elliptic equations

Definition (Carleson measure)

Denote R(x , r) = B(x , r)× (0, r). A measure on Rn × (0,∞) is Carleson if

‖µ‖C := sup
x ,r

µ(R(x , r))

rn
<∞.
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Elliptic equations

Dahlberg’s questions on A∞

I Perturbations: small deviation of A from a good coefficient matrix A0

as

µ(x ′, xn+1) =
1

xn+1
sup

y∈B(x ′,xn+1/2)
|A(y)− A0(y)|2, ‖µ‖C <∞.

The elliptic measure being A∞ is stable under these perturbations
(Fefferman–Kenig–Pipher 1991).

I Smoothness:

µ(x ′, xn+1) =
1

xn+1
inf
A0

sup
y∈B(x ′,xn+1/2)

|A(y)− A0(y)|2, ‖µ‖C <∞.

These have elliptic measure in A∞
(Kenig–Pipher 2001).
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Elliptic equations

Weak Dahlberg–Kenig–Pipher condition

Set

αA,2(x , t) = inf
A0

(
1

tn+1

∫∫
(t/2,t)×B(x ,t)

|A(x , s)− A0|2 dxds

)1/2

.

If

dµA,2 = αA,2(x , t)2 dtdx

t

is density of a Carleson measure, then A is a weak D-matrix (or DKP).
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Elliptic equations

Small A∞ constants

I For every p > 1 there is δ > 0, so that if ‖µA,∞‖C < δ, then the
Dirichlet problem is Lp solvable (Dindos–Petermichl–Pipher 2007).

I If
lim
s→0

sup
y
‖1B(y ,s)×(0,s)µA,2‖C = 0,

then the logarithm of the Poisson kernel is locally in VMO
(Bortz–Toro–Zhao 2021). This relies on Green function estimates
(David–Li–Mayboroda 2021) and results on asymptotically optimal
weights via Carleson measure conditions (Korey 1998).

I If ‖µA,2‖C < δ for δ > 0 small, then the elliptic measure with pole at

infinity w has log[w ]A∞ . ‖µA,2‖
1/2
C (Bortz-Egert-S 2021/2022).

I Chord-arc domains with small constants have harmonic measures with
small A∞ constants (David–Li–Mayboroda 2022).
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Elliptic equations

Proof scheme I: Green’s function (D-L-M)

I If A is weak DKP, then A-Green’s function (with pole at infinity) is
approximable by affine functions (DLM).

For (x0, λ0) ∈ Rn+1
+

1

λn+1
0

∫∫
R(x0,λ0)

β(x , λ)2 dxdλ

λ
≤ C‖µA‖C

where
R(x , λ) = Q(x , λ)× (0, λ)

and

β(x , λ)2 =
−
∫
−
∫
R(x ,λ) |∇u(y , t)− 〈∂n+1u〉R(x ,λ)en+1|2 dydt

−
∫
−
∫
R(x ,λ) |∇u(y , t)|2 dydt
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Elliptic equations

Proof scheme II: Testing (B-T-Z)

I The energy β controls FKP-A∞ constant.

Fix functions ψ and φ where φ ≥ 1Q(0,1/2) and φ, ψ ∈ C∞c (Q(0, 1)). Then

there exists C ≥ 1 such that for all (x , λ) ∈ Rn+1
+

λ|∇(ψλ ∗ ω)(x)|
(φλ ∗ ω)(x)

≤ C

(
β(x , λ) + αA(x , λ)

)
where ω is the A-elliptic measure with pole at infinity.

Remark:

I By a result of Fefferman–Kenig–Pipher, the Carleson norm of the left
hand side being finite implies A∞.

I By a result of Korey, the vanishing Carleson implies asymptotically
flat A∞.
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Elliptic equations

Proof scheme III: Weights (B-E-S)

Theorem (Bortz–Egert–S 2022)

Let n ≥ 1 and let D ≥ 1. Then there exist constants C , ε > 0 such that
the following holds. Let w be a weight with doubling constant D and let
uw be its heat extension. Let

dµ(x , t) = |∇ log uw (x , t2)|2t dxdt.

I If ‖µ‖C < ε, then log[w ]A∞ ≤ C
√
‖µ‖C .

I If log[w ]A∞ < ε, then ‖µ‖C ≤ C
√

log[w ]A∞ .

Remark: A Littlewood–Paley decomposition argument allows to control
the generic kernel by heat kernel.
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Elliptic equations

Proof of the easy direction: log[w ]A∞ ≤ C
√
‖µ‖C

Key estimate: (write W (x , r) = B(x , r)× (r/2, r))

Lemma

Let w be a doubling weight. There exists a constant C depending only on
dimension and the doubling constant such that for all (x , r) ∈ Rn+1

+ ,

r2|∆u(x , r2)|
u(x , r2)

+
r |∇u(x , r2)|
u(x , r2)

≤ C

√
1

|∆(x , r)|

∫∫
W (x ,r)

|∇u(y , t2)|2
u(y , t2)2

t dydt.

This is standard interior estimate for heat equation plus

I parabolic forward Harnack due to positivity;

I parabolic backward Harnack due to doubling of initial data.

Olli Saari, UPC Parabolic BVP Online, 16 October 15 / 22



Elliptic equations

Proof of the easy direction: log[w ]A∞ ≤ C
√
‖µ‖C

Key estimate: (write W (x , r) = B(x , r)× (r/2, r))

Lemma

Let w be a doubling weight. There exists a constant C depending only on
dimension and the doubling constant such that for all (x , r) ∈ Rn+1

+ ,

r2|∆u(x , r2)|
u(x , r2)

+
r |∇u(x , r2)|
u(x , r2)

≤ C

√
1

|∆(x , r)|

∫∫
W (x ,r)

|∇u(y , t2)|2
u(y , t2)2

t dydt.

This is standard interior estimate for heat equation plus

I parabolic forward Harnack due to positivity;

I parabolic backward Harnack due to doubling of initial data.

Olli Saari, UPC Parabolic BVP Online, 16 October 15 / 22



Elliptic equations

Computation

By scaling and translation, it suffices to prove the estimate for the unit
ball B = B(0, 1).

0 ≤ logwB − (logw)B

=

(
logwB − sup

x∈B
log u(x , 1)

)
+

(
sup
x∈B

log u(x , 1)− (log u(·, 1))B

)
+ ((log u(·, 1))B − (logw)B) = I + II + III

I III: FTC in t, heat equation, divergence theorem, key lemma.

I II: FTC in x , key lemma.
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ball B = B(0, 1).
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Elliptic equations

Bounding logwB − supx∈B log u(x , 1)

It holds

I ≤ log+

(
wB − (u(·, 1))B
supx∈B u(x , 1)

+ 1

)

and

wB − (u(1, ·))B =
1

|B|

∫
B

∫ 1

0
t∆u(x , t2) dxdt

≤ 1

|B|

∫
∂B

∫ 1

0
t|∇u(x , t2)| dxdt.

The claim then follows from

supx∈B u(x , t)

supy∈B u(y , 1)
≤ sup

x∈B
exp

(
−
∫ 1

t
∂s log u(x , s) ds

)
≤ t−C

√
‖µ‖C .
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Parabolic equations
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Parabolic equations

Parabolic equations

Divergence form parabolic equations

ut − divA∇u + B · ∇u = 0, in R× Rn+1
+

u = g , on ∂(R× Rn+1
+ )

with A : R× Rn+1
+ → Rn×n satisfying the conditions similar to as in the

elliptic case and B : R× Rn+1
+ → Rn satisfying

zn+1|B(t, z)| ≤ ε

for a structural parameter ε > 0.
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Parabolic equations

Let W (z) be the Whitney type parabolic cylinder around z : for
z = (t, x , λ)

W (z) = (t − λ2, t + λ2)× Q(x , λ/2)× (λ/2, λ).

Definition (Weak-DKP condition, parabolic)

Let A : R× R1+n
+ → Rn×n and B : R× R1+n

+ → Rn be locally integrable
functions. Define for z ∈ R × R1+n

+

αA(z) =

(
−
∫
W (z)

|A(y)− A0(z)|2 dy

)1/2

, A0(z) = −
∫
W (z)

A(y) dy

αB(z) =

(
−
∫
W (z)

|B(y)|2y2
n+2 dy

)1/2

, αA,B(z) = αA(z) + α2(z).

Define µA,B(z) = αA,B(z)2z−1
n+2. We say that (A,B) satisfies a weak

DKP-condition if ‖µA,B‖C(E) <∞.
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Parabolic equations

Theorem (Work in progress, Bortz–Egert–S)

Let M0 be given. There exists ε0 > 0, κ0 ≥ 1, δ0 > 0, a ≥ 1 and C ≥ 1
such that the following holds. Let δ ∈ (0, δ0), ε ∈ (0, ε0) and consider
M0-elliptic matrix and ε-small drift (previous slide).
Fix (t0, x0, λ0) ∈ R× R1+n

+ and set p0 = a+(t0, x0, κ0λ0). Let ω be the
parabolic measure with pole at p0. Denote

dν(t, x , λ) = αA,B(t, x , λ)2 dtdxdλ

λ
,

where αA,B is the DKP-quantity.

If ‖ν‖C ≤ δ, then ω � dtdx and denoting k = dω
dtdx , we have for all

(t, x , λ) with R(t, x , 2λ) ⊂ R(t0, x0, λ0)

log

(
−
∫
−
∫
Qbdry (t,x ;δaλ)

k(τ, y) dτdy

)
−−
∫
−
∫
Qbdry (t,x ;δaλ)

log k(τ, y) dτdy ≤ C
√
δ.
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Parabolic equations

Thank you for your attention!
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