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1. Preliminaries

Definition(Locally nilpotent derivation)
Let R be an integral domain containing a field k of charateristic zero .
A function D : R→ R is said to be a locally nilpotent derivation
(LND) if it satisfies the following properties:

P1 D(r + s) = D(r) + D(s) for all r, s ∈ R

P2 D(rs) = rD(s) + sD(r) for all r, s ∈ R

P3 for every r ∈ R there exists n ∈ N such that Dn(r) = 0
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1. Preliminaries

Definition(Degree function)
Let G be a totally ordered abelian group. A function
µ : R→ G ∪ {−∞} is said to be a degree function on R if it satisfies
the following properties:

(a) µ(r) = −∞ if and only if r = 0.

(b) µ(rs) = µ(r) + µ(s) for every r, s ∈ R

(c) µ(r + s) ≤ max{µ(r), µ(s)} for every r, s ∈ R
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1. Preliminaries

Every locally nilpotent derivation D on R defines a degree function.

degD : R→ Z ∪ {−∞}

for r 6= 0, degD(r) := max{n ∈ N ∪ {0}|Dn(r) 6= 0}
and degD(0) = −∞
• degD(r) = −∞ if and only if r = 0

• degD(rs) = degD(r) + degD(s)

• degD(r + s) ≤ max{degD(r), degD(s)}
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1. Preliminaries

Definition (Irreducible LND)
D ∈ LND(R) is said to be irreducible if (DR) is not contained in a
proper principal ideal of R.

Triangularizable LND

Let D be a locally nilpotent derivation on k[n]. Then D is said to
triangularizable if there exist a system of variables X1, ...,Xn such that

D(Xi) ∈ k[X1, ...,Xi−1]

for 1 ≤ i ≤ n
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1. Preliminaries

Definition (Degree of a locally nilpotent derivation)
Let G be a totally ordered abelian group. µ : R→ G ∪ {−∞} be a
degree function on R and D ∈ LND(R). If maximum of the set
{µ(D(r))− µ(r)|r ∈ R, r 6= 0} is in G ∪ {−∞}, then we define

degreeµ(D) = max{µ(D(r))− µ(r)|r ∈ R, r 6= 0}

Definition(Homogeneous locally nilpotent derivation)
Let R = ⊕n∈GRn be a G graded domain containing a field k.
D ∈ LND(R) is said to be homogeneous with respect to the G grading
if and only if there exists d ∈ G such that DRn ⊂ Rn+d for all n ∈ G.
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1. Preliminaries

Now we define rank of a locally nilpotent R-derivation D on a
polynomial ring R[n] over a domain R containing a field k.

Definition (Rank of an LND)

Let D be a locally nilpotent R- derivation on the polynomial ring R[n].
Then we define rank of D by:

min{r |DV1, ...,DVr 6= 0 and DVr+1 = ... = DVn = 0

where V1,V2, ...Vn is a system of variables of R[n]}
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2. Degrees of linear variables of k[X,Y,Z] with respect to homogeneous
LND and rank 3 derivations

In [2] (page-112) G. Freudenburg has asked the following
question:

Q. Does there exist a homogeneous locally nilpotent derivation
on k[n] of degree 2 and rank n ?

We investigated the above question for n = 3.
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2. Degrees of linear variables of k[X,Y,Z] with respect to homogeneous
LND and rank 3 derivations

(Miyanishi, Kambayashi): For a field k of characteristic 0, if
D ∈ LND(k[3]),then ker(D) = k[2].

(Zurkowski): If D is a homogeneous LND on k[X,Y,Z] with
respect to a positive Z- grading ω, then ker(D) = k[F,G] where
F,G are homogeneous with respect to ω.

(D. Daigle): If D ∈ LND(k[n]) and ker(D) = k[F1, ...,Fn−1],
then D = α∆(F1,...,Fn−1) for some α ∈ ker(D).

A homogeneous locally nilpotent derivation D = α∆(F,G) on k[3]

is said to be of type (l,m, n) if deg(α) = l, deg(F) = m and
deg(G) = n.
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2. Degrees of linear variables of k[X,Y,Z] with respect to homogeneous
LND and rank 3 derivations

Theorem 2.1
Let D be a homogeneous locally nilpotent derivation of rank(D) > 1
with respect to the standard grading (1, 1, 1) on k[X,Y,Z]. Then there
exist linear system of variables {L1,L2,L3} such that
degD(L1) < degD(L2) < degD(L3)

• The above result generalizes for R[X,Y,Z], where R is a PID.

• But it is not true for every one dimensional normal domain.
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2. Degrees of linear variables of k[X,Y,Z] with respect to homogeneous
LND and rank 3 derivations

Theorem 2.2
With respect to the standard grading (1, 1, 1) on k[X,Y,Z], there is no
homogeneous locally nilpotent derivation of type (0, 3, 3) and
(0, 2, d + 1) for d = 1, 2, 3.
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2. Degrees of linear variables of k[X,Y,Z] with respect to homogeneous
LND and rank 3 derivations

Let D be a homogeneous LND of degree d on k[X,Y,Z] with
respect to the standard grading (1, 1, 1) and D = α∆(F,G) for
some α ∈ k[F,G]. Then

d = deg(α) + deg(F) + deg(G)− 3

If d = 0 , then either deg(F) = 1 or deg(G) = 1. So
rank(D) < 3
If d = 1 and rank(D) = 3, then D must be a homogeneous LND
of type (0, 2, 2).
If d = 2 and rank(D) = 3, then D must be a homogeneous LND
of type (0, 2, 3).
If d = 3 and rank(D) = 3, then D must be a homogeneous LND
of type (0, 2, 4) or (0, 3, 3) or (2, 2, 2).
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2. Degrees of linear variables of k[X,Y,Z] with respect to homogeneous
LND and rank 3 derivations

Corollary 2.3
There is no homogeneous locally nilpotent derivation of rank 3 and
degree ≤ 3 on k[X,Y,Z] with respect to the standard grading (1, 1, 1).
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3. Homogeneous locally nilpotent derivation of rank 2 on k[X,Y,Z]

We investigated the structure of homogeneous locally nilpotent deriva-
tions of rank 2 on k[3] and characterised the triangularizable derivations
among those.
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3. Homogeneous locally nilpotent derivation of rank 2 on k[X,Y,Z]

Lemma 3.1
D be an irreducible homogeneous locally nilpotent derivation of rank
2 and degree d on k[U,V,W] with respect to the standard grading.
Then D is triangularizable if and only if there exists a system of
variables {X,Y,Z} linear in U,V,W such that D = ∆(X,P) where

P = Yd+2 + Xfd+1(X,Y) + βXd+1Z

with 0 = degD(X) < degD(Y) < degD(Z), fd+1(X,Y) is homogeneous
polynomial of degree d + 1 and β ∈ k∗.
Moreover, degD(Y) = 1 and degD(Z) = d + 2.
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3. Homogeneous locally nilpotent derivation of rank 2 on k[X,Y,Z]

Proposition 3.1
An irreducible homogeneous LND of rank 2 and degree p− 2 on
k[U,V,W] is triangularizable, where p is a prime.

It is clear from the Proposition 3.1 that the 2 is the smallest
possible degree of an homogeneous LND of rank 2 which may
not be triangularizable.
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3. Homogeneous locally nilpotent derivation of rank 2 on k[X,Y,Z]

Theorem 3.1
Let D be an irreducible homogeneous locally nilpotent derivation of
rank 2 and degree 2 with respect to the standard grading on
k[U,V,W] where k is algebraically closed. Then D is not
triangularizable if and only if there exists a system of varible
{X,Y,Z} linear in U,V,W such that D = ∆(X,P) where

P = (Y2 + XZ)2 + cX3Y

for c ∈ k∗ with 0 = degD(X) < degD(Y) < degD(Z).
Moreover, degD(Y) = 2 and degD(Z) = 4.
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The Freeness Conjecture

Definition (Degree modules)
With respect to D ∈ LND(R), the set Fn = {r ∈ R| degD(r) ≤ n} is
said to be the n-th degree A- module, where A = ker(D).

Definition (D- basis)
Let D ∈ LND(R) and A = ker(D), a basis for a free A- submodule M
of R is said to be a D- basis if every element of the basis has distinct
degD value.

In [3] G. Freudenburg has conjectured the following:
Let B = k[3] and D ∈ LND(B). If A = ker(D), then B is a free A-
module with basis β = {bi| i ∈ N ∪ {0}} where degD(bi) = i.
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4. Freeness of homogeneous triangularizable LND

Theorem 4.1
Let D be a triangularizable homogeneous locally nilpotent derivation
on B = k[U,V,W] and A = ker(D). Then B is free A- module with a
D- basis.

The homogeneous non-triangularizable locally nilpotent
derivation of rank 2 and degree 2 has the freeness property.
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Freeness Property

For D ∈ LND(k[n]), where n ≥ 4, the freeness property does not
hold.

The freeness property of any locally nilpotent derivation D is
equivalent to the fact that

For every n, the degree module Fn is a free A- module with a D-
basis {bi| 0 ≤ i ≤ n}.
D. Daigle has shown that every Fn is free A- module of rank
n + 1.

The existence of a D- basis is needed to be shown.
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Example of a rank 3 R- derivation

Example

Let B = R[X,Y,Z] where R = R[W1,W2]

(W2
1+W2

2−1)
w1 and w2 denote the residue classes of W1 and W2 in R respectively.
For d ≥ 0 we define a homogeneous locally nipotent R-derivation D
of degree d on B as follows

DX = (1− w2)Xd+1
1

DY = −w1Xd+1
1

DZ = (d + 2)w1Yd+1

where X1 = w1X + (1− w2)Y ∈ R[X,Y,Z]
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Example of a rank 3 R- derivation

• ker(D) 6= R[2]

• rank(D) = 3

• degD(X) = degD(Y) = 1 and degD(Z) = d + 2

• no linear system of variables {V1,V2,V3} such that

degD(V1) < degD(V2) < degD(V3)
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