Degrees of linear variables of k[X, Y, Z] with respect to homogeneous Lt Homogeneous locally nilpotent derivation of rank 2 on k[X, Y, Z]Freeness of homogeneous triangularizable LND References

Homogeneous Locally nilpotent derivations of rank 2 and 3 on k[X, Y, Z]

A joint work with Dr. Neena Gupta

Parnashree Ghosh Junior Research Fellow Stat-Math Unit Indian Statistical Institute Kolkata

July 30, 2021

Contents

1 Preliminaries

- **2** Degrees of linear variables of k[X, Y, Z] with respect to homogeneous LND and rank 3 derivations
- **3** Homogeneous locally nilpotent derivation of rank 2 on *k*[*X*, *Y*, *Z*]
- **4** Freeness of homogeneous triangularizable LND

5 References

Degrees of linear variables of k[X, Y, Z] with respect to homogeneous L1 Homogeneous locally nilpotent derivation of rank 2 on k[X, Y, Z]Freeness of homogeneous triangularizable LND References

1. Preliminaries

Definition(Locally nilpotent derivation)

Let *R* be an integral domain containing a field *k* of charateristic zero . A function $D: R \to R$ is said to be a locally nilpotent derivation (LND) if it satisfies the following properties:

P1
$$D(r+s) = D(r) + D(s)$$
 for all $r, s \in R$

P2
$$D(rs) = rD(s) + sD(r)$$
 for all $r, s \in R$

P3 for every $r \in R$ there exists $n \in \mathbb{N}$ such that $D^n(r) = 0$

Degrees of linear variables of k[X, Y, Z] with respect to homogeneous L1 Homogeneous locally nilpotent derivation of rank 2 on k[X, Y, Z]Freeness of homogeneous triangularizable LND References

1. Preliminaries

Definition(Degree function)

Let *G* be a totally ordered abelian group. A function $\mu : R \to G \cup \{-\infty\}$ is said to be a degree function on *R* if it satisfies the following properties:

(a)
$$\mu(r) = -\infty$$
 if and only if $r = 0$.

(b)
$$\mu(rs) = \mu(r) + \mu(s)$$
 for every $r, s \in R$

(c) $\mu(r+s) \le max\{\mu(r), \mu(s)\}$ for every $r, s \in R$

Degrees of linear variables of k[X, Y, Z] with respect to homogeneous LM Homogeneous locally nilpotent derivation of rank 2 on k[X, Y, Z]Freeness of homogeneous triangularizable LND References

1. Preliminaries

Every locally nilpotent derivation D on R defines a degree function.

$$deg_D: R \to \mathbb{Z} \cup \{-\infty\}$$

for $r \neq 0$, $deg_D(r) := max\{n \in \mathbb{N} \cup \{0\} | D^n(r) \neq 0\}$ and $deg_D(0) = -\infty$

- $deg_D(r) = -\infty$ if and only if r = 0
- $deg_D(rs) = deg_D(r) + deg_D(s)$
- $deg_D(r+s) \le max\{deg_D(r), deg_D(s)\}$

Degrees of linear variables of k[X, Y, Z] with respect to homogeneous Ll Homogeneous locally nilpotent derivation of rank 2 on k[X, Y, Z]Freeness of homogeneous triangularizable LND References

1. Preliminaries

Definition (Irreducible LND)

 $D \in LND(R)$ is said to be irreducible if (DR) is not contained in a proper principal ideal of *R*.

Degrees of linear variables of k[X, Y, Z] with respect to homogeneous LN Homogeneous locally nilpotent derivation of rank 2 on k[X, Y, Z]Freeness of homogeneous triangularizable LND References

1. Preliminaries

Definition (Irreducible LND)

 $D \in LND(R)$ is said to be irreducible if (DR) is not contained in a proper principal ideal of R.

Triangularizable LND

Let *D* be a locally nilpotent derivation on $k^{[n]}$. Then *D* is said to triangularizable if there exist a system of variables $X_1, ..., X_n$ such that

$$D(X_i) \in k[X_1, ..., X_{i-1}]$$

for $1 \le i \le n$

Degrees of linear variables of k[X, Y, Z] with respect to homogeneous LM Homogeneous locally nilpotent derivation of rank 2 on k[X, Y, Z]Freeness of homogeneous triangularizable LND References

1. Preliminaries

Definition (Degree of a locally nilpotent derivation)

Let *G* be a totally ordered abelian group. $\mu : R \to G \cup \{-\infty\}$ be a degree function on *R* and $D \in LND(R)$. If maximum of the set $\{\mu(D(r)) - \mu(r) | r \in R, r \neq 0\}$ is in $G \cup \{-\infty\}$, then we define

$$degree_{\mu}(D) = max\{\mu(D(r)) - \mu(r) | r \in R, r \neq 0\}$$

Degrees of linear variables of k[X, Y, Z] with respect to homogeneous LN Homogeneous locally nilpotent derivation of rank 2 on k[X, Y, Z]Freeness of homogeneous triangularizable LND References

1. Preliminaries

Definition (Degree of a locally nilpotent derivation)

Let *G* be a totally ordered abelian group. $\mu : R \to G \cup \{-\infty\}$ be a degree function on *R* and $D \in LND(R)$. If maximum of the set $\{\mu(D(r)) - \mu(r) | r \in R, r \neq 0\}$ is in $G \cup \{-\infty\}$, then we define

$$degree_{\mu}(D) = max\{\mu(D(r)) - \mu(r) | r \in R, r \neq 0\}$$

Definition(Homogeneous locally nilpotent derivation)

Let $R = \bigoplus_{n \in G} R_n$ be a *G* graded domain containing a field *k*. $D \in LND(R)$ is said to be homogeneous with respect to the *G* grading if and only if there exists $d \in G$ such that $DR_n \subset R_{n+d}$ for all $n \in G$.

Degrees of linear variables of k[X, Y, Z] with respect to homogeneous Ll Homogeneous locally nilpotent derivation of rank 2 on k[X, Y, Z]Freeness of homogeneous triangularizable LND References

1. Preliminaries

Now we define rank of a locally nilpotent *R*-derivation *D* on a polynomial ring $R^{[n]}$ over a domain *R* containing a field *k*.

Degrees of linear variables of k[X, Y, Z] with respect to homogeneous LM Homogeneous locally nilpotent derivation of rank 2 on k[X, Y, Z]Freeness of homogeneous triangularizable LND References

1. Preliminaries

Now we define rank of a locally nilpotent *R*-derivation *D* on a polynomial ring $R^{[n]}$ over a domain *R* containing a field *k*.

Definition (Rank of an LND)

Let *D* be a locally nilpotent *R*- derivation on the polynomial ring $R^{[n]}$. Then we define rank of *D* by:

 $min\{r \mid DV_1, ..., DV_r \neq 0 \text{ and } DV_{r+1} = ... = DV_n = 0$

where $V_1, V_2, ..., V_n$ is a system of variables of $R^{[n]}$

2. Degrees of linear variables of k[X, Y, Z] with respect to homogeneous LND and rank 3 derivations

In [2] (page-112) G. Freudenburg has asked the following question:

2. Degrees of linear variables of k[X, Y, Z] with respect to homogeneous LND and rank 3 derivations

In [2] (page-112) G. Freudenburg has asked the following question:

Q. Does there exist a homogeneous locally nilpotent derivation on $k^{[n]}$ of degree 2 and rank n ?

2. Degrees of linear variables of k[X, Y, Z] with respect to homogeneous LND and rank 3 derivations

In [2] (page-112) G. Freudenburg has asked the following question:

Q. Does there exist a homogeneous locally nilpotent derivation on $k^{[n]}$ of degree 2 and rank n ?

We investigated the above question for n = 3.

2. Degrees of linear variables of k[X, Y, Z] with respect to homogeneous LND and rank 3 derivations

(Miyanishi, Kambayashi): For a field k of characteristic 0, if D ∈ LND(k^[3]), then ker(D) = k^[2].

2. Degrees of linear variables of k[X, Y, Z] with respect to homogeneous LND and rank 3 derivations

- (Miyanishi, Kambayashi): For a field k of characteristic 0, if D ∈ LND(k^[3]), then ker(D) = k^[2].
- (Zurkowski): If *D* is a homogeneous LND on k[X, Y, Z] with respect to a positive \mathbb{Z} grading ω , then ker(D) = k[F, G] where *F*, *G* are homogeneous with respect to ω .

2. Degrees of linear variables of k[X, Y, Z] with respect to homogeneous LND and rank 3 derivations

- (Miyanishi, Kambayashi): For a field k of characteristic 0, if D ∈ LND(k^[3]), then ker(D) = k^[2].
- (Zurkowski): If *D* is a homogeneous LND on k[X, Y, Z] with respect to a positive \mathbb{Z} grading ω , then ker(D) = k[F, G] where *F*, *G* are homogeneous with respect to ω .
- (D. Daigle): If $D \in LND(k^{[n]})$ and $ker(D) = k[F_1, ..., F_{n-1}]$, then $D = \alpha \Delta_{(F_1,...,F_{n-1})}$ for some $\alpha \in ker(D)$.

 Preliminaries

 Degrees of linear variables of k[X, Y, Z] with respect to homogeneous LN

 Homogeneous locally nilpotent derivation of rank 2 on k[X, Y, Z]

 Freeness of homogeneous triangularizable LND

 References

2. Degrees of linear variables of k[X, Y, Z] with respect to homogeneous LND and rank 3 derivations

- (Miyanishi, Kambayashi): For a field k of characteristic 0, if D ∈ LND(k^[3]), then ker(D) = k^[2].
- (Zurkowski): If *D* is a homogeneous LND on k[X, Y, Z] with respect to a positive \mathbb{Z} grading ω , then ker(D) = k[F, G] where *F*, *G* are homogeneous with respect to ω .
- (D. Daigle): If $D \in LND(k^{[n]})$ and $ker(D) = k[F_1, ..., F_{n-1}]$, then $D = \alpha \Delta_{(F_1,...,F_{n-1})}$ for some $\alpha \in ker(D)$.
- A homogeneous locally nilpotent derivation D = αΔ_(F,G) on k^[3] is said to be of type (l, m, n) if deg(α) = l, deg(F) = m and deg(G) = n.

2. Degrees of linear variables of k[X, Y, Z] with respect to homogeneous LND and rank 3 derivations

Theorem 2.1

Let *D* be a homogeneous locally nilpotent derivation of rank(D) > 1with respect to the standard grading (1, 1, 1) on k[X, Y, Z]. Then there exist linear system of variables $\{L_1, L_2, L_3\}$ such that $deg_D(L_1) < deg_D(L_2) < deg_D(L_3)$

2. Degrees of linear variables of k[X, Y, Z] with respect to homogeneous LND and rank 3 derivations

Theorem 2.1

Let *D* be a homogeneous locally nilpotent derivation of rank(D) > 1with respect to the standard grading (1, 1, 1) on k[X, Y, Z]. Then there exist linear system of variables $\{L_1, L_2, L_3\}$ such that $deg_D(L_1) < deg_D(L_2) < deg_D(L_3)$

• The above result generalizes for R[X, Y, Z], where R is a PID.

2. Degrees of linear variables of k[X, Y, Z] with respect to homogeneous LND and rank 3 derivations

Theorem 2.1

Let *D* be a homogeneous locally nilpotent derivation of rank(D) > 1with respect to the standard grading (1, 1, 1) on k[X, Y, Z]. Then there exist linear system of variables $\{L_1, L_2, L_3\}$ such that $deg_D(L_1) < deg_D(L_2) < deg_D(L_3)$

• The above result generalizes for R[X, Y, Z], where R is a PID.

• But it is not true for every one dimensional normal domain.

2. Degrees of linear variables of k[X, Y, Z] with respect to homogeneous LND and rank 3 derivations

Theorem 2.2

With respect to the standard grading (1, 1, 1) on k[X, Y, Z], there is no homogeneous locally nilpotent derivation of type (0, 3, 3) and (0, 2, d + 1) for d = 1, 2, 3.

2. Degrees of linear variables of k[X, Y, Z] with respect to homogeneous LND and rank 3 derivations

$$d = deg(\alpha) + deg(F) + deg(G) - 3$$

2. Degrees of linear variables of k[X, Y, Z] with respect to homogeneous LND and rank 3 derivations

Let *D* be a homogeneous LND of degree *d* on k[X, Y, Z] with respect to the standard grading (1, 1, 1) and $D = \alpha \Delta_{(F,G)}$ for some $\alpha \in k[F, G]$. Then

$$d = deg(\alpha) + deg(F) + deg(G) - 3$$

If *d* = 0, then either *deg*(*F*) = 1 or *deg*(*G*) = 1. So *rank*(*D*) < 3

2. Degrees of linear variables of k[X, Y, Z] with respect to homogeneous LND and rank 3 derivations

$$d = deg(\alpha) + deg(F) + deg(G) - 3$$

- If *d* = 0, then either *deg*(*F*) = 1 or *deg*(*G*) = 1. So *rank*(*D*) < 3
- If d = 1 and rank(D) = 3, then D must be a homogeneous LND of type (0, 2, 2).

 Preliminaries

 Degrees of linear variables of k[X, Y, Z] with respect to homogeneous LN

 Homogeneous locally nilpotent derivation of rank 2 on k[X, Y, Z]

 Freeness of homogeneous triangularizable LND

 References

2. Degrees of linear variables of k[X, Y, Z] with respect to homogeneous LND and rank 3 derivations

$$d = deg(\alpha) + deg(F) + deg(G) - 3$$

- If *d* = 0, then either *deg*(*F*) = 1 or *deg*(*G*) = 1. So *rank*(*D*) < 3
- If d = 1 and rank(D) = 3, then D must be a homogeneous LND of type (0, 2, 2).
- If d = 2 and rank(D) = 3, then D must be a homogeneous LND of type (0, 2, 3).

 Preliminaries

 Degrees of linear variables of k[X, Y, Z] with respect to homogeneous LN

 Homogeneous locally nilpotent derivation of rank 2 on k[X, Y, Z]

 Freeness of homogeneous triangularizable LND

 References

2. Degrees of linear variables of k[X, Y, Z] with respect to homogeneous LND and rank 3 derivations

$$d = deg(\alpha) + deg(F) + deg(G) - 3$$

- If *d* = 0, then either *deg*(*F*) = 1 or *deg*(*G*) = 1. So *rank*(*D*) < 3
- If d = 1 and rank(D) = 3, then D must be a homogeneous LND of type (0, 2, 2).
- If d = 2 and rank(D) = 3, then D must be a homogeneous LND of type (0, 2, 3).
- If d = 3 and rank(D) = 3, then D must be a homogeneous LND of type (0, 2, 4) or (0, 3, 3) or (2, 2, 2).

2. Degrees of linear variables of k[X, Y, Z] with respect to homogeneous LND and rank 3 derivations

Corollary 2.3

There is no homogeneous locally nilpotent derivation of rank 3 and degree ≤ 3 on k[X, Y, Z] with respect to the standard grading (1, 1, 1).

Degrees of linear variables of k[X, Y, Z] with respect to homogeneous LN Homogeneous locally nilpotent derivation of rank 2 on k[X, Y, Z]Freeness of homogeneous triangularizable LND References

3. Homogeneous locally nilpotent derivation of rank 2 on k[X, Y, Z]

We investigated the structure of homogeneous locally nilpotent derivations of rank 2 on $k^{[3]}$ and characterised the triangularizable derivations among those.

Degrees of linear variables of k[X, Y, Z] with respect to homogeneous LN Homogeneous locally nilpotent derivation of rank 2 on k[X, Y, Z]Freeness of homogeneous triangularizable LND References

3. Homogeneous locally nilpotent derivation of rank 2 on k[X, Y, Z]

Lemma 3.1

D be an irreducible homogeneous locally nilpotent derivation of rank 2 and degree *d* on k[U, V, W] with respect to the standard grading. Then *D* is triangularizable if and only if there exists a system of variables $\{X, Y, Z\}$ linear in *U*, *V*, *W* such that $D = \Delta_{(X,P)}$ where

$$P = Y^{d+2} + Xf_{d+1}(X, Y) + \beta X^{d+1}Z$$

with $0 = deg_D(X) < deg_D(Y) < deg_D(Z), f_{d+1}(X, Y)$ is homogeneous polynomial of degree d + 1 and $\beta \in k^*$. Moreover, $deg_D(Y) = 1$ and $deg_D(Z) = d + 2$.

Degrees of linear variables of k[X, Y, Z] with respect to homogeneous LN Homogeneous locally nilpotent derivation of rank 2 on k[X, Y, Z]Freeness of homogeneous triangularizable LND References

3. Homogeneous locally nilpotent derivation of rank 2 on k[X, Y, Z]

Proposition 3.1

An irreducible homogeneous LND of rank 2 and degree p - 2 on k[U, V, W] is triangularizable, where p is a prime.

Degrees of linear variables of k[X, Y, Z] with respect to homogeneous LN Homogeneous locally nilpotent derivation of rank 2 on k[X, Y, Z]Freeness of homogeneous triangularizable LND References

3. Homogeneous locally nilpotent derivation of rank 2 on k[X, Y, Z]

Proposition 3.1

An irreducible homogeneous LND of rank 2 and degree p - 2 on k[U, V, W] is triangularizable, where p is a prime.

It is clear from the Proposition 3.1 that the 2 is the smallest possible degree of an homogeneous LND of rank 2 which may not be triangularizable.

Degrees of linear variables of k[X, Y, Z] with respect to homogeneous LN Homogeneous locally nilpotent derivation of rank 2 on k[X, Y, Z]Freeness of homogeneous triangularizable LND References

3. Homogeneous locally nilpotent derivation of rank 2 on k[X, Y, Z]

Theorem 3.1

Let *D* be an irreducible homogeneous locally nilpotent derivation of rank 2 and degree 2 with respect to the standard grading on k[U, V, W] where *k* is algebraically closed. Then *D* is not triangularizable if and only if there exists a system of varible $\{X, Y, Z\}$ linear in *U*, *V*, *W* such that $D = \Delta_{(X,P)}$ where

$$P = (Y^2 + XZ)^2 + cX^3Y$$

for $c \in k^*$ with $0 = deg_D(X) < deg_D(Y) < deg_D(Z)$. Moreover, $deg_D(Y) = 2$ and $deg_D(Z) = 4$.

Degrees of linear variables of k[X, Y, Z] with respect to homogeneous LM Homogeneous locally nilpotent derivation of rank 2 on k[X, Y, Z]Freeness of homogeneous triangularizable LND References

The Freeness Conjecture

Definition (Degree modules)

With respect to $D \in LND(R)$, the set $\mathscr{F}_n = \{r \in R | deg_D(r) \le n\}$ is said to be the *n*-th degree *A*- module, where A = ker(D).

Degrees of linear variables of k[X, Y, Z] with respect to homogeneous LN Homogeneous locally nilpotent derivation of rank 2 on k[X, Y, Z]Freeness of homogeneous triangularizable LND References

The Freeness Conjecture

Definition (Degree modules)

With respect to $D \in LND(R)$, the set $\mathscr{F}_n = \{r \in R | deg_D(r) \le n\}$ is said to be the *n*-th degree *A*- module, where A = ker(D).

Definition (D- basis)

Let $D \in LND(R)$ and A = ker(D), a basis for a free A- submodule M of R is said to be a D- basis if every element of the basis has distinct deg_D value.

Degrees of linear variables of k[X, Y, Z] with respect to homogeneous LN Homogeneous locally nilpotent derivation of rank 2 on k[X, Y, Z]Freeness of homogeneous triangularizable LND References

The Freeness Conjecture

Definition (Degree modules)

With respect to $D \in LND(R)$, the set $\mathscr{F}_n = \{r \in R | deg_D(r) \le n\}$ is said to be the *n*-th degree *A*- module, where A = ker(D).

Definition (D- basis)

Let $D \in LND(R)$ and A = ker(D), a basis for a free A- submodule M of R is said to be a D- basis if every element of the basis has distinct deg_D value.

In [3] G. Freudenburg has conjectured the following: Let $B = k^{[3]}$ and $D \in LND(B)$. If A = ker(D), then B is a free A-module with basis $\beta = \{b_i | i \in \mathbb{N} \cup \{0\}\}$ where $deg_D(b_i) = i$.

Degrees of linear variables of k[X, Y, Z] with respect to homogeneous Lt Homogeneous locally nilpotent derivation of rank 2 on k[X, Y, Z]Freeness of homogeneous triangularizable LND References

4. Freeness of homogeneous triangularizable LND

Theorem 4.1

Let *D* be a triangularizable homogeneous locally nilpotent derivation on B = k[U, V, W] and A = ker(D). Then *B* is free *A*- module with a *D*- basis.

Degrees of linear variables of k[X, Y, Z] with respect to homogeneous Lt Homogeneous locally nilpotent derivation of rank 2 on k[X, Y, Z]Freeness of homogeneous triangularizable LND References

4. Freeness of homogeneous triangularizable LND

Theorem 4.1

Let *D* be a triangularizable homogeneous locally nilpotent derivation on B = k[U, V, W] and A = ker(D). Then *B* is free *A*- module with a *D*- basis.

The homogeneous non-triangularizable locally nilpotent derivation of rank 2 and degree 2 has the freeness property.

Freeness Property

For D ∈ LND(k^[n]), where n ≥ 4, the freeness property does not hold.

Freeness Property

- For D ∈ LND(k^[n]), where n ≥ 4, the freeness property does not hold.
- The freeness property of any locally nilpotent derivation *D* is equivalent to the fact that

For every *n*, the degree module \mathscr{F}_n is a free *A*- module with a *D*-basis $\{b_i | 0 \le i \le n\}$.

Freeness Property

- For D ∈ LND(k^[n]), where n ≥ 4, the freeness property does not hold.
- The freeness property of any locally nilpotent derivation *D* is equivalent to the fact that

For every *n*, the degree module \mathscr{F}_n is a free *A*- module with a *D*-basis $\{b_i | 0 \le i \le n\}$.

• D. Daigle has shown that every \mathscr{F}_n is free A- module of rank n+1.

Freeness Property

- For D ∈ LND(k^[n]), where n ≥ 4, the freeness property does not hold.
- The freeness property of any locally nilpotent derivation *D* is equivalent to the fact that

For every *n*, the degree module \mathscr{F}_n is a free *A*- module with a *D*-basis $\{b_i | 0 \le i \le n\}$.

- D. Daigle has shown that every \mathscr{F}_n is free A- module of rank n+1.
- The existence of a *D* basis is needed to be shown.

Degrees of linear variables of k[X, Y, Z] with respect to homogeneous LM Homogeneous locally nilpotent derivation of rank 2 on k[X, Y, Z]Freeness of homogeneous triangularizable LND References

Example of a rank 3 *R*- derivation

Example

where

Let
$$B = R[X, Y, Z]$$
 where $R = \frac{\mathbb{R}[W_1, W_2]}{(W_1^2 + W_2^2 - 1)}$

 w_1 and w_2 denote the residue classes of W_1 and W_2 in *R* respectively. For $d \ge 0$ we define a homogeneous locally nipotent *R*-derivation *D* of degree *d* on *B* as follows

$$DX = (1 - w_2)X_1^{d+1}$$
$$DY = -w_1X_1^{d+1}$$
$$DZ = (d+2)w_1Y^{d+1}$$
e $X_1 = w_1X + (1 - w_2)Y \in R[X, Y, Z]$

Degrees of linear variables of k[X, Y, Z] with respect to homogeneous Ll Homogeneous locally nilpotent derivation of rank 2 on k[X, Y, Z]Freeness of homogeneous triangularizable LND References

Example of a rank 3 R- derivation

•
$$ker(D) \neq R^{[2]}$$

Freeness of homogeneous triangularizable LND References

Example of a rank 3 R- derivation

- *ker*(D) ≠ R^[2] *rank*(D) = 3

Freeness of homogeneous triangularizable LND References

Example of a rank 3 R- derivation

- *ker*(D) ≠ R^[2] *rank*(D) = 3

•
$$deg_D(X) = deg_D(Y) = 1$$
 and $deg_D(Z) = d + 2$

Degrees of linear variables of k[X, Y, Z] with respect to homogeneous Ll Homogeneous locally nilpotent derivation of rank 2 on k[X, Y, Z]Freeness of homogeneous triangularizable LND References

Example of a rank 3 R- derivation

- $ker(D) \neq R^{[2]}$
- rank(D) = 3
- $deg_D(X) = deg_D(Y) = 1$ and $deg_D(Z) = d + 2$
- no linear system of variables $\{V_1, V_2, V_3\}$ such that

 $deg_D(V_1) < deg_D(V_2) < deg_D(V_3)$

Preliminaries [, Z] with respect to homogeneous

Degrees of linear variables of k[X, Y, Z] with respect to homogeneous L Homogeneous locally nilpotent derivation of rank 2 on k[X, Y, Z]Freeness of homogeneous triangularizable LND References

6. References

- 1. D. Daigle, On some properties of locally nilpotent derivations, J. Pure Appl. Algebra 114(1997), 221-230.
- 2. G.Freudenburg, *Algebraic Theory of Locally Nilpotent Derivations*, SpringerVerlag GmbH Germany (2017)
- 3. G. Freudenburg, *Canonical factorization of the quotient* morphism for an affine G_a- variety, Transformation Groups, Vol. 24, No. 2, 2019, pp. 355-377
- 4. M.Miyanishi, *Normal affine subalgebras of a polynomial ring*, Algebraic and Topological Theories- to the memory of Dr. Takehiko Miyata (Tokyo), Kinokuniya, 1985, pp. 37-51.
- 5. T. Kambayashi, *On the absence of nontrivial separable forms of the affine plane*, J. Algebra 35 (1975), 449-456.

5. References

- 6. V.D. Zurkowski, *Locally finite derivations*, Rocky Mount. J. Math, to appear.
- 7. Parnashree Ghosh and Neena Gupta, Some results on Homogeneous locally nilpotent derivations of rank 2 and 3 on k^[3], preprint.