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Numerical semigroups

• Let n1, . . . , ns ∈ N such that gcd(n1, . . . , ns) = 1. Then an additive submonoid

H = 〈n1, . . . , ns〉 =

{
s∑

i=1

aini | a1, . . . , as ∈ N

}

is called a numerical semigroup. (i.e., N \ H is finite)

• Frobenius number: F(H) = max {N \ H}.
• Pseudo-Frobenius number: f /∈ H such that f + h ∈ H, for all h ∈ H \ {0}.
• The set of pseudo-Frobenius numbers of H is denoted by PF(H).

• H is symmetric ⇐⇒ PF(H) = {F(H)}.
• Let k be a field. Then k[H] = k[th | h ∈ H] is the semigroup ring of H.

• (Kunz, 1970) H is symmetric if and only if k[H] is a Gorenstein ring.
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Row-Factorization matrices
• The set of pseudo-Frobenius numbers of H,

PF(H) = {f /∈ H | f + ni ∈ H, for all i = 1, . . . , s}.

• (Moscariello, 2016) Let f ∈ PF(H). An s× s matrix M = (mij) is a
row-factorization (RF) matrix of f if for all i = 1, . . . , s,

s∑
j=1

mij nj = f ,

where mii = −1 and mij ∈ N for all i 6= j, i = 1, . . . , s.

• RF-matrices, in general, are not unique.

• Theorem. Cohen-Macaulay type of an almost Gorenstein monomial curve in
A4 is at most 3. In other words, for an almost symmetric numerical semigroup
H generated by 4 elements, |PF(H)| ≤ 3.

• Almost symmetric: If for any f ∈ PF(H) \ {F(H)}, F(H)− f ∈ PF(H).
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Example

• Let H = 〈5, 6, 9〉. Then N \ H = {1, 2, 3, 4, 7, 8, 13} and PF(H) = {13}.

13 + 5 = 3(6) + 0(9) 13 + 5 = 0(6) + 2(9)

13 + 6 = 2(5) + 1(9)

13 + 9 = 2(5) + 2(6)

RF(13) =

−1 3 0
2 −1 1
2 2 −1

 , RF(13) =

−1 0 2
2 −1 1
2 2 −1


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Almost arithmetic sequence

• Let m0,m1, . . . ,mp ∈ N be a strictly increasing arithmetic sequence and let
n ∈ N such that gcd(m0, . . . ,mp, n) = 1. Also, assume that {m0, . . . ,mp, n} is
a minimal generating set for the numerical semigroup H.

• (Patil-Singh, 1990) Studied this class of numerical semigroups.

• (Patil, 1993) Gave minimal generating set of the defining ideal.

• (Patil-Sengupta, 1999) Gave a complete description of pseudo-Frobenius
numbers in the above setup.

• (Bhardwaj-G-Sengupta, 2021) Give a description of the row-factorization
matrices.
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Generic toric ideals

• Let H = 〈n1, . . . , ns〉. The semigroup ring k[H] ' k[x1, . . . , xs]/IH , where IH is
called the defining ideal of H.

• IH is a toric ideal, generated by binomials.

• (I. Peeva-B. Sturmfels, 1998) If a toric ideal has a minimal generating set
consisting of binomials with full support, then it is called generic.

• Theorem. If IH is a generic toric ideal, then the ring k[H] is Golod and so the
Poincaré series of the residue field is rational.

• Theorem. (K. Eto, 2020) IH is generic if and only if for each f ∈ PF(H),
RF(f ) = (ai,j) is unique and ai,j 6= ai′,j if i 6= i′.

• Example. Let H = 〈5, 6, 9〉. Then

k[H] = k[t5, t6, t9] =
k[x, y, z]

(y3 − z2, x3 − yz)
.
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Generic toric ideals

• Theorem. (Bhardwaj-G-Sengupta, 2021) Let H be a numerical semigroup
minimally generated by an almost arithmetic sequence, i.e.,
H = 〈m0, . . . ,mp, n〉, where mi = m0 + id for i ∈ [1, p] and gcd(m0, n, d) = 1.

(i) If p = 0, then IH is generic.
(ii) If p = 1, and if W 6= ∅, µ > 0, then IH is generic. Otherwise, it is never generic.

(iii) If p > 1, then IH is not generic.

• Theorem. (Bhardwaj-G-Sengupta, 2021) Let H be a complete intersection
numerical semigroup with embedding dimension at least 3. Then IH is not
generic.
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RF-relations

• Let H be a numerical semigroup and let f ∈ PF(H). Let δ1, . . . , δs denote the
row vectors of RF(f ). Set δ(ij) = δj − δi, for all 1 ≤ i < j ≤ s.

• Then φij = xδ
+
(ij) − xδ

−
(ij) ∈ IH for all i < j. We call φij an RF(f )-relation.

• We call a binomial relation φ ∈ IH an RF-relation if it is an RF(f )-relation for
some f ∈ PF(H).

• Herzog-Watanabe raised the following question:

Question: When is IH minimally generated by RF-relations?

• Theorem. (Bhardwaj-G-Sengupta, 2021) Let H = 〈m0,m1, . . . ,mp, n〉 be a
symmetric numerical semigroup generated by an almost arithmetic sequence,
where p = 2 or 3. Then IH has a minimal generating set consisting of
RF-relations.
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Affine semigroups in Nd

• Let S be a finitely generated submonoid of Nd, say generated by
n1, . . . , ns ⊆ Nd. Such submonoids are called affine semigroups.

• Let G(S) ⊆ Zd denote the group generated by S. Set

Γ(S) := (G(S) \ S) ∩ Nd.

• The set of pseudo-Frobenius elements of S,

PF(S) = {f ∈ Γ(S) | f + nj ∈ S, ∀ j ∈ [1, s]}.

• S has maximal projective dimension (MPD) if pdimR k[S] = s− 1.
Equivalently, depthR k[S] = 1.

• (J. I. Garcı́a-Garcı́a et. al., 2020) S is a MPD-semigroup ⇐⇒ PF(S) 6= ∅.
• |PF(S)| <∞ and type(S) = |PF(S)| is the type of S.

• The definition of row-factorization matrices holds.
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Example

• Let S = 〈(0, 1), (3, 0), (4, 0), (1, 4), (5, 0), (2, 7)〉. Then, for R = k[x1, . . . , x6],

we have a minimal free resolution

0→ R(16, 15)⊕ R(17, 18)→ R12 → R27 → R28 → R12 → R→ k[S]→ 0.

PF(S) = {(16, 15)− (15, 12) = (1, 3), (17, 18)− (15, 12) = (2, 6)}.

RF(1, 3) =



−1 0 0 1 0 0
3 −1 1 0 0 0
3 0 −1 0 1 0
0 0 0 −1 0 1
3 2 0 0 −1 0

10 1 0 0 0 −1


.
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Frobenius element
• We define the (set of) Frobenius elements of S by

F(S) = {f ∈ Γ(S) | f = max
≺

Γ(S), with respect to some term order ≺}.

• If |PF(S)| = 1 and Frobenius element exists, then S is called a symmetric
semigroup.

• The semigroup S1 = 〈(0, 1), (3, 0), (5, 0), (1, 3), (2, 3)〉 is a symmetric
semigroup as PF(S1) = {(7, 2)} and (7, 2) = max≺ Γ(S1), where ≺ is a
graded lexicographic order.

• Let S2 = 〈n1, n2, n3, n4〉 where, for h ≥ 2, n1 = (2h− 1)2h,
n2 = (2h− 1)(2h + 1), n3 = 2h(2h + 1) and n4 = 2h(2h + 1) + 2h− 1. Let
S̄2 denote the projective closure of the monomial curves. Then

S̄ = 〈(0, n4), (n1, n4 − n1), (n2, n4 − n2), (n3, n4 − n3), (n4, 0)〉.

Then PF(S̄) = {f = (16h3 − 6h + 1, 8h2 − 6h + 1)} but f is not a Frobenius
element.
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RF-matrices and generic toric ideals

• Theorem. (Bhardwaj-G-Sengupta) Let S be a MPD-semigroup. If IS is
generic, then for each f ∈ PF(S), RF(f ) = (ai,j) is unique and ai,j 6= ai′,j if
i 6= i′.

• Let PF′(S) = PF(S) \ {F(S)} and PF′(S) 6= ∅. For any g ∈ PF′(S), if
F(S)− g ∈ PF′(S), we say that S is almost symmetric.

• Theorem. (Bhardwaj-G-Sengupta) Let n ≥ 4 and S = 〈a1, . . . , an〉 be an
almost symmetric MPD semigroup. Then IS is not generic.
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