A¹-fibrations on Affine Varieties

R. V. Gurjar

Department of Mathematics, IIT Bombay

Symposium on superannuation of Prof. Dilip P. Patil

Organised by : Department of Mathematics, IISc Bangalore

Date : July 29, 2021

Introduction

 \triangleright For simplicity we will only consider algebraic varieties over \mathbb{C} , the field of complex numbers.

Definition (\mathbb{A}^1 -fibration)

A morphism $f : W \to V$ on an affine variety W to an algebraic variety V is called an \mathbb{A}^1 -fibration if

- 1 f is dominant; and
- **2** a general fiber of f is isomorphic to the affine line \mathbb{A}^1 .

Generalities about log Kodaira dimension $\bar{\kappa} = -\infty$

Let *X* be a smooth affine variety.

▷ We can embed $X \subset Y$, where Y is a smooth projective completion such that D := Y - X is a simple normal crossing (SNC) divisor.

• (SNC divisors when dim Y = 2): A divisor *D* of *Y* is an SNC divisor if all the irreducible components of *D* are smooth, any two irreducible components of *D* meet transversally and no three of them meet in a point.

 \triangleright Let K_Y be the canonical divisor of Y. If the linear system

$$|n(K_Y + D)| = H^0(Y, n(K_Y + D)) = (0),$$

for all $n \ge 1$, we say that the *log Kodaira dimension* $\bar{\kappa}(X) = -\infty$.

▷ This was defined by S. Iitaka.

Two very basic properties of $\bar{\kappa}$ are the following (the proofs are not difficult).

- **1** Let φ : $X \to Z$ be a dominant morphism between smooth varieties such that a general fiber of φ is a finite set (i.e., φ is quasi-finite). If $\bar{\kappa}(X) = -\infty$, then $\bar{\kappa}(Z) = -\infty$.
- 2 Let φ : X → Z be a finite unramified morphism between smooth affine varieties. Then κ(X) = -∞ if and only if κ(Z) = -∞.

T. Fujita–M. Miyanishi–T. Sugie proved the following fundamental result in 1979.

Theorem 1

A smooth affine surface X has $\bar{\kappa}(X) = -\infty$ if and only if X has an \mathbb{A}^1 -fibration $f: X \to C$ onto a smooth algebraic curve C (which can be a projective curve).

5/18

As an easy consequence of the above theorem we get:

Theorem 2 (Cancellation Theorem for \mathbb{C}^2) If $X \times \mathbb{C} \cong \mathbb{C}^3$, then $X \cong \mathbb{C}^2$.

Examples of \mathbb{A}^1 -fibrations

▷ It is well-known that the existence of a locally nilpotent derivation action on an affine domain *R* over \mathbb{C} is equivalent to the action of the affine algebraic group $\mathbb{G}_a := (\mathbb{C}, +)$ on Spec *R*.

 \triangleright A rich source of examples of \mathbb{A}^1 -fibrations is the following.

Example 1

Let δ be a non-trivial locally nilpotent derivation acting on the coordinate ring $\Gamma(X, \mathcal{O}_X)$ of a smooth affine variety X such that the ring of constants $\Gamma(X, \mathcal{O}_X)^{\delta} := \ker(\delta)$ is a finitely generated \mathbb{C} -algebra. Let Y be the affine variety corresponding to the ring of constants. Then the induced morphism $\eta : X \to Y$ is an \mathbb{A}^1 -fibration.

▷ In fact, understanding these examples is very important in Affine Algebraic Geometry.

A result due to Białynicki-Birula

Notation : For a complex analytic variety X, $H_c^i(X)$ denotes the *cohomology group with compact support* of X with coefficient group \mathbb{Z} .

Białynicki-Birula proved the following result.

Theorem 3 *If* \mathbb{G}_a *acts on an irreducible smooth affine variety X then*

$$H^i_c(X) \cong H^i_c(X^{\mathbb{G}_a}) \quad \textit{for } i = 0, 1.$$

Here, $X^{\mathbb{G}_a}$ *is the closed subvariety of* \mathbb{G}_a *-fixed points of* X*.*

▷ This is one illustration of the usefulness of topological methods in Affine Algebraic Geometry.

Singular fibers of an \mathbb{A}^1 -fibration

Let $f : X \to C$ be an \mathbb{A}^1 -fibration on a smooth affine surface X. Then X has a smooth completion Y such that f extends to a \mathbb{P}^1 -fibration $f' : Y \to \overline{C}$, where \overline{C} is a smooth completion of C.

 \triangleright A fiber of f' which has at least two irreducible components is called a *singular fiber* of f'.

▷ A very useful property of a singular fiber F_0 of f' is:

- **1** F_0 is connected.
- *F*₀ contains at least one (−1)-curve (i.e., a smooth projective rational curve *B* such that the self-intersection (*B*²) = −1).

• If an irreducible component of F_0 is a (-1)-curve and occurse with multiplicity 1 in F_0 , then F_0 contains another (-1)-curve.

 By successively contracting (−1)-curves in F₀ we can blow-down F₀ to a regular fiber on a smooth projective surface Y.

Using this result the following can be proved.

Theorem 4

If $f : X \to C$ is an \mathbb{A}^1 -fibration on a smooth affine surface then every fiber of f is a disjoint union of curves isomorphic to \mathbb{A}^1 , possibly occuring with multiplicities in the fiber.

Theorem 5

Let $f : X \to C$ be an \mathbb{A}^1 -fibration on a normal affine surface. Suppose C is affine. Then there is an action of a locally nilpotent \mathbb{C} -derivation δ on $\Gamma(X, \mathcal{O}_X)$ such that the kernel of δ is $\Gamma(C, \mathcal{O}_C)$.

▷ This can be generalized to the case when dim $X \ge 3$, but we omit the statement.

▷ Converse of the above result is also true.

\mathbb{A}^1 -fibrations on singular surfaces

Let $f : X \to C$ be an \mathbb{A}^1 -fibration on a normal affine surface.

▷ M. Miyanishi proved most of the assertions in the following theorem.

Theorem 6

- **1** Every singular fiber of f is a disjoint union of irreducible curves isomorphic to \mathbb{A}^1 .
- **2** *X* has atmost cyclic quotient singular points.
- 3 If an irreducible component Δ of a singular fiber occurs with multiplicity 1 in the fiber, then Δ does not contain any singular point of X.

Some remarks

▷ I gave a simple proof of the previous theorem using topological ideas and proved the smoothness of any irreducible component of a singular fiber.

▷ There are some results of the above type when *X* is non-normal. We will not mention them here for lack of time.

Higher dimensions

▷ There exist 3-dimensional smooth affine varieties *X* such that $\bar{\kappa}(X) = -\infty$, but *X* has no \mathbb{A}^1 -fibration.

Example 2 (Dubouloz-Kishimoto)

There exists a smooth cubic hypersurface $S \subset \mathbb{P}^3$ such that $\bar{\kappa}(\mathbb{P}^3 - S) = -\infty$, but $\mathbb{P}^3 - S$ has no \mathbb{A}^1 -fibration.

This is closely related to the following result:

Result 7

 \mathbb{P}^4 has smooth cubic 3-folds T which are unirational but not rational.

Singular fibers

Now we assume dim $X \ge 3$ and X has an \mathbb{A}^1 -fibration $f: X \to Y$ onto a normal algebraic variety Y of dimension dim X - 1.

▷ As a sample, we state the following result.

Theorem 8

Let δ be a locally nilpotent derivation on smooth affine 3-fold X and $Y := X/\!\!/_{\mathbb{G}_{a'}}$ where \mathbb{G}_a is the affine algebraic group $(\mathbb{C}, +)$ acting on X corresponding to δ and Y corresponds to the ring of constants $\Gamma(X, \mathcal{O}_X)^{\delta} := \ker(\delta)$. Let C_0 be a 1-dimensional irreducible component of a fiber F_0 of the quotient morphism $\pi : X \to Y$. Then $C_0 \cong \mathbb{A}^1$.

▷ The proof is somewhat non-trivial.

Many locally nilpotent derivations

Let *X* be a smooth affine variety, and $\delta_1, \delta_2, ..., \delta_r$ "independent" locally nilpotent derivations on $\Gamma(X, \mathcal{O}_X)$.

▷ The case when $r = \dim X$ is of particular interest. Even in this case, when dim X > 2, the structure of X is not well-understood.

We end with two unsolved problems.

Question 1

Let X be a smooth affine surface such that $H_i(X; \mathbb{Z}) = 0$ for all i > 0. Let δ be a non-trivial locally nilpotent derivation on $\Gamma(X, \mathcal{O}_X)$.

Is $\Gamma(X, \mathcal{O}_X)^{\delta} := \ker(\delta)$ a regular affine domain?

▷ It can be proved that *X* has at most one singular point and it is of E_8 type.

Question 2

Let X *be a smooth affine contractible* 3*-fold. If* X *has* 3 *independent locally nilpotent derivations, is* $X \cong \mathbb{C}^3$?

Suggestive book on affine space fibrations

In this lecture I have just scratched the surface of the theory of \mathbb{A}^1 -fibrations.

• For more details, please see the recently published book *Affine Space Fibrations* by M. Miyanishi–K. Masuda–R.V. Gurjar. It is published by *de Gruyter* of Germany.

• The book also deals with \mathbb{A}^2 -fibrations.

• This book is based largely on the research works of M. Koras, K. Masuda, M. Miyanishi, P. Russell, and R.V. Gurjar over the past thirty five years.

THANK YOU

◆□ ▶ ◆□ ▶ ◆ ■ ▶ ◆ ■ ◆ ○ Q ○ 18 / 18