Differential Methods for 0-dimensional Schemes

Martin Kreuzer

University of Passau

martin.kreuzer@uni-passau.de

Symposium in Honour of Dilip Patil, July 29, 2021

Contents

- Zero-dimensional Schemes
- 2 Kähler Differentials
- 3 Normalization
- 4) **Regularity Bounds**
- 5 Application to Points in the Plane

This is joint work with **Tran N. K. Linh** (Hue University) and **Le N. Long** (Hue University / Passau University).

1. Zero-dimensional Schemes

You can teach an old dog new tricks if the old dog wants to learn. (Tip O'Neill)

 $P = K[x_0, ..., x_n]$ polynomial ring over a field K of characteristic 0 $I = \langle f_1, ..., f_m \rangle$ homogeneous saturated ideal in P \mathbb{P}^n projective space over \overline{K} $\mathbb{X} = \mathcal{Z}(I) \subseteq \mathbb{P}^n$ 0-dimensional subscheme R = P/I homogeneous coordinate ring of \mathbb{X} is a 1-dimensional Cohen-Macaulay ring $x_0 \in R$ is a assumed to be a non-zerodivisor

The Hilbert Function

The map $\operatorname{HF}_{\mathbb{X}}$: $\mathbb{Z} \longrightarrow \mathbb{Z}$ given by $\operatorname{HF}_{\mathbb{X}}(i) = \dim_{\mathcal{K}}(R_i)$ is called the **Hilbert function** of \mathbb{X} . It satisfies

 $1 = \mathrm{HF}_{\mathbb{X}}(0) < \mathrm{HF}_{\mathbb{X}}(1) < \cdots < \mathrm{HF}_{\mathbb{X}}(r_{\mathbb{X}}) = \mathsf{deg}(\mathbb{X}) = \mathrm{HF}_{\mathbb{X}}(r_{\mathbb{X}}+1) =$

 \cdots where r_X is called the **regularity index** of X

Theorem (Bigatti, Geramita)

Given a set of points X in \mathbb{P}^n , the following claims hold:

(a) At most $r_{\mathbb{X}} + 1$ points of \mathbb{X} are collinear.

(b) If $\operatorname{HF}_{\mathbb{X}}(r_{\mathbb{X}}) = \operatorname{HF}_{\mathbb{X}}(r_{\mathbb{X}}-1) + 1 = \operatorname{HF}_{\mathbb{X}}(r_{\mathbb{X}}-2) + 2$ then precisely $r_{\mathbb{X}} + 1$ points of \mathbb{X} are collinear.

The Canonical Module

The graded *R*-module $\omega_R = \underline{\operatorname{Hom}}_{K[x_0]}(R, K[x_0])(-1)$ is called the **canonical module** of *R*. We have

 $\mathrm{HF}_{\omega_{\mathcal{R}}}(-r_{\mathbb{X}}) = 0 < \mathrm{HF}_{\omega_{\mathcal{R}}}(-r_{\mathbb{X}}+1) < \cdots < \mathrm{HF}_{\omega_{\mathcal{R}}}(1) = \mathsf{deg}(\mathbb{X}) = \cdots$

Theorem (Geramita, K, Robbiano)

For a finite set of points X in \mathbb{P}^n , we have equivalent conditions: (a) The set X has the Cayley-Bacharach property, i.e., every hypersurface of degree $r_X - 1$ which passes through all points of Xbut one, automatically passes through the remaining point. (b) The multiplication map $R_{r_X-1} \otimes (\omega_R)_{-r_X+1} \longrightarrow (\omega_R)_0$ is non-degenerate.

2. Kähler Differentials

"So, what's your superpower?"

"I'm rich."

(Tony Stark)

 $\mathbb{X} \subset \mathbb{P}^n$ 0-dimensional subscheme $R = P/I_{\mathbb{X}} = K[x_0, \dots, x_n]/I_{\mathbb{X}}$ homogeneous coordinate ring of \mathbb{X} $\mu : R \otimes_K R \longrightarrow R$ multiplication map $J = \ker(\mu) = \langle x_i \otimes 1 - 1 \otimes x_i \mid i = 0, \dots, n \rangle$ The finitely generated graded *R*-module $\Omega^1_{R/K} = J/J^2$ is called the **module of Kähler differentials** of R/K (or of \mathbb{X}). The map $d : R \longrightarrow \Omega^1_{R/K}$ given by $df = f \otimes 1 - 1 \otimes f + J^2$ is called the **universal derivation** of R/K.

Computing $\Omega^1_{R/K}$

For
$$P = K[x_0, \ldots, x_n]$$
, we have $\Omega^1_{P/K} = P \, dx_0 \oplus \cdots \oplus P \, dx_n$.

Theorem

We have $\Omega^1_{R/K} = \Omega^1_{P/K}/(I_X \Omega^1_{P/K} + dI_X)$. In other words, there is a homogeneous exact sequence

$$0 \ \longrightarrow \ \mathcal{G}(-1) \ \longrightarrow \ R^{n+1}(-1) \ \longrightarrow \ \Omega^1_{R/K} \ \longrightarrow \ 0$$

where \mathcal{G} is generated by the tuples $(\frac{\partial f}{\partial x_0}, \ldots, \frac{\partial f}{\partial x_n})$ with $f \in I_X$ and where (g_0, \ldots, g_n) is mapped to $g_0 dx_0 + \cdots + g_n dx_n$ on the right-hand side.

The Hilbert Function of $\Omega^1_{R/K}$

For $i \in \mathbb{Z}$, let $\operatorname{HF}_{\Omega^1_{R/K}}(i) = \dim_{\mathcal{K}}(\Omega^1_{R/K})_i$. The map $\operatorname{HF}_{\Omega^1_{R/K}} : \mathbb{Z} \to \mathbb{Z}$ is called the **Hilbert function** of $\Omega^1_{R/K}$.

Theorem

(a) HF_{Ω¹_{R/K}}(i) = 0 for i ≤ 0.
(b) HF_{Ω¹_{R/K}}(i) has a constant value HP_{Ω¹} := HP(Ω¹_{R/K}) for i ≫ 0.
(c) Let ri_{Ω¹} := ri(Ω¹_{R/K}) be the regularity index of Ω¹_{R/K}, i.e., the smallest number j such that HF_{Ω¹_{R/K}}(i) = HP(Ω¹_{R/K}) for i ≥ j. Then we have ri(Ω¹_{R/K}) ≥ r_X + 1 and if ri(Ω¹_{R/K}) > r_X + 1 then

$$\mathrm{HF}_{\Omega^1_{R/K}}(r_{\mathbb{X}}+1) > \cdots > \mathrm{HF}_{\Omega^1_{R/K}}(\mathrm{ri}_{\Omega^1})$$

Kähler Differential *m*-Forms

For $m \ge 0$, we let $\Omega_{R/K}^m = \Lambda_R^m \ \Omega_{R/K}^1$ and call it the **module of Kähler differential** *m*-forms of R/K (or of X).

The exterior algebra $\Lambda_R \Omega^1_{R/K} = \bigoplus_{i \ge 0} \Omega^m_{R/K}$ is called the **Kähler** differential algebra of R/K (or of X).

Theorem (Computing $\Omega^m_{R/K}$ **)**

For every $m \geq 1$, we have $\Omega^m_{R/K} = \Omega^m_{P/K}/(I_{\mathbb{X}}\Omega^m_{P/K} + dI_{\mathbb{X}} \wedge \Omega^{m-1}_{P/K}).$

This allows us to compute a presentation of $\Omega^m_{R/K}$. The finitely generated graded *R*-module $\Omega^m_{R/K}$ has a constant Hilbert polynomial $\operatorname{HP}_{\Omega^m}$ and a regularity index $\operatorname{ri}_{\Omega^m}$ which we can compute as well.

Example

In the projective plane \mathbb{P}^2 over $K = \mathbb{Q}$, let \mathbb{X} be a set of 6 points on an irreducible conic, and let \mathbb{Y} be a set of 6 points on a reducible conic, e.g., $\mathbb{Y} = \{(1:-1:0), (1:1:0), (1:2,0), (1:0:-1), (1:0:1), (1:0:2)\} \subset \mathcal{Z}(x_1x_2)$. Then we have $HF_{\mathbb{X}} = HF_{\mathbb{Y}}: 13566 \cdots$, the graded free resolutions of both coordinate rings are

$$0 \longrightarrow P(-5) \longrightarrow P(-2) \oplus P(-3) \longrightarrow P \longrightarrow R \longrightarrow 0$$

and the HF of $\Omega^{1}_{R_{\mathbb{X}}/K}$ and $\Omega^{1}_{R_{\mathbb{Y}}/K}$ agree: 0 3 8 11 10 7 6 6 \cdots However, $\operatorname{HF}_{\Omega^{2}_{R_{\mathbb{X}}/K}}$: 0 0 3 6 4 1 0 0 \cdots and $\operatorname{HF}_{\Omega^{2}_{R_{\mathbb{Y}}/K}}$: 0 0 3 6 5 1 0 0 \cdots differ.

Questions

(1) What is the Hilbert polynomial of $\Omega^m_{R/K}$?

(2) What is the regularity index of $\Omega^m_{R/K}$? Do we have good bounds for it?

(3) Which geometric properties of \mathbb{X} can we characterize using the Hilbert functions of $\Omega^m_{R/K}$?

3. Normalization

Darth Vader: You have learned much, young one. Luke: You'll find I'm full of surprises. (from Star Wars - Episode V)

X 0-dimensional subscheme of \mathbb{P}^n $R = P/I_X$ homogeneous coordinate ring of X $Q^h(R) = \{ \frac{a}{b} \mid a, b \in R, b \text{ homogeneous non-zerodivisor } \}$ homogeneous quotient ring of R

Lemma

$$Q^h(R)=R_{x_0}$$

The Affine Coordinate Ring

By assumption, we have $\mathbb{X} \subseteq D_+(x_0) \cong \mathbb{A}^n$.

 $S \cong R/\langle x_0 - 1 \rangle \cong K[x_1, \dots, x_n]/I_{\mathbb{X}}^{\text{deh}}$ affine coordinate ring of \mathbb{X} For $i \ge r_{\mathbb{X}}$, we have $R_i \cong S x_0^i$ via $f \mapsto f^{\text{deh}} x_0^i$.

Theorem

(a) $Q^h(R) \cong S[x_0, x_0^{-1}]$ (b) $\widetilde{R} = S[x_0] \subseteq Q^h(R)$ is an integral extension of R via $f \mapsto f^{\text{deh}} x_0^d$ for $f \in R_d$.

(c) \widehat{R} is the integral closure of R in $Q^h(R)$ iff \mathbb{X} is reduced.

Theorem

Let
$$\widetilde{R} = S[x_0]$$
.
(a) $\Omega^1_{\widetilde{R}/K} = S[x_0]dx_0 \oplus K[x_0] \otimes \Omega^1_{S/K}$
(b) $\operatorname{HF}_{\Omega^1_{\widetilde{R}/K}}(0) = \dim_K(\Omega^1_{S/K})$ and for $i \ge 1$ we have
 $\operatorname{HF}_{\Omega^1_{\widetilde{R}/K}}(i) = \dim_K(\Omega^1_{S/K}) + \dim_K(S)$

(c) The scheme $\mathbb X$ is reduced iff $\Omega^1_{{\cal S}/{\cal K}}=0.$

4. Regularity Bounds

I don't know why the sacrifice didn't work. The science was so solid. (King Julien)

 $\mathbb X$ 0-dimensional subscheme of $\mathbb P^n$ $R = P/I_{\mathbb X}$ homogeneous coordinate ring of $\mathbb X$

Theorem

(a) For i ≥ 2r_X + 1, the multiplication by x₀ yields an isomorphism μ : (Ω¹_{R/K})_i → (Ω¹_{R/K})_{i+1}.
(b) ri(Ω¹_{R/K}) ≤ 2 ri_X +1

Note that the monomorphism $i: R \hookrightarrow \widetilde{R} = S[x_0]$ induces a canonical R-module homomorphism $\psi: \Omega^1_{R/K} \longrightarrow \Omega^1_{\widetilde{R}/K}$. Its kernel is the **torsion submodule** of $\Omega^1_{R/K}$, i.e., $T\Omega^1_{R/K} = \ker(\psi) = \{w \in \Omega^1_{R/K} \mid x_0^i w = 0 \text{ for some } i \ge 1\}.$

Theorem

(a) For
$$i \ge 2r_{\mathbb{X}} + 1$$
, we have $(T\Omega^1_{R/K})_i = 0$ and

$$\psi_i: \ (\Omega^1_{\mathcal{R}/\mathcal{K}})_i \ \longrightarrow \ (\Omega^1_{\widetilde{\mathcal{R}}/\mathcal{K}})_i \cong S[x_0]_{i-1} dx_0 \ \oplus \ x_0^i \cdot \Omega^1_{S/\mathcal{K}}$$

is an isomorphism of K-vector spaces.

(b) We have
$$\operatorname{HP}(\Omega^1_{R/K}) = \operatorname{deg}(\mathbb{X}) + \operatorname{dim}_K(\Omega^1_{S/K})$$
.

For the ring
$$\widetilde{R} = S[x_0]$$
, we can compute $\Omega^m_{\widetilde{R}/K}$ as follows.

Theorem

(a) Ω^m_{R/K} ≅ K[x₀] ⊗ Ω^m_{S/K} ⊕ K[x₀]dx₀ ∧ Ω^{m-1}_{S/K}
(b) The canonical R-module homomorphism Λ^mψ : Ω^m_{R/K} → Ω^m_{R/K} is an isomorphism in degrees ≥ 2r_X + m.
(c) HP(Ω^m_{R/K}) = dim_K(Ω^m_{S/K}) + dim_K(Ω^{m-1}_{S/K}).
(d) ri(Ω^m_{R/K}) ≤ 2r_X + m

5. Application to Points in the Plane

Haters will see you walk on water and say: "It's because he can't swim." (Anonymous)

 $\mathbb{X} \subset \mathbb{P}^2$ finite set of *s* points $R = P/I_{\mathbb{X}} = K[x_0, x_1, x_2]/I_{\mathbb{X}}$ homogeneous coordinate ring $S = K[x_1, x_2]/I_{\mathbb{X}}^{\text{deh}}$ affine coordinate ring of \mathbb{X} in $D_+(x_0) \cong \mathbb{A}^2$

Example

For s = 3, we have $HF_X : 1 \ 2 \ 3 \ 3 \ \cdots$ if the three points are collinear and $HF_X : 1 \ 3 \ 3 \ \cdots$ otherwise.

Example (Four Points in the Plane)

Let s = 4.

(a) We have HF_X : 1 2 3 4 4 \cdots iff the four points are collinear.

(b) Otherwise, we have $HF_X : 1344 \cdots$.

If the multiplication map $R_1 \otimes (\omega_R)_{-1} \longrightarrow (\omega_R)_0$ is non-degenerate then \mathbb{X} is the complete intersection of two conics.

(c) Otherwise, \mathbb{X} consists of three points on a line and one point off the line.

Example (Five Points in the Plane)

Let s = 5.

(a) \mathbb{X} consists of 5 points on a line iff $HF_{\mathbb{X}}$: 1 2 3 4 5 5

(b) X consists of 4 points on a line and one point off the line iff HF_X : 13455

(c) Suppose that no four points of X are collinear. Then we have $HF_X : 1355 \cdots$. The set X is contained in the union of two lines iff $HF_{\Omega^2_{R/K}} : 003520 \cdots$. (d) No three points of X are collinear iff $HF : 1355 \cdots$ and $HF_{\Omega^2_{R/K}} : 003510 \cdots$. In this case X is contained in a unique non-singular conic.

THE END

Give a man a mask, and he will show you his true face. (Oscar Wilde)

Thank you very much for your attention!