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1. Zero-dimensional Schemes

You can teach an old dog new tricks

if the old dog wants to learn.

(Tip O’Neill)

P = K [x0, . . . , xn] polynomial ring over a field K of characteristic 0

I = 〈f1, . . . , fm〉 homogeneous saturated ideal in P

Pn projective space over K

X = Z(I ) ⊆ Pn 0-dimensional subscheme

R = P/I homogeneous coordinate ring of X is a 1-dimensional

Cohen-Macaulay ring

x0 ∈ R is a assumed to be a non-zerodivisor
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The Hilbert Function

The map HFX : Z −→ Z given by HFX(i) = dimK (Ri ) is called the

Hilbert function of X. It satisfies

1 = HFX(0) < HFX(1) < · · · < HFX(rX) = deg(X) = HFX(rX + 1) =

· · · where rX is called the regularity index of X

Theorem (Bigatti, Geramita)
Given a set of points X in Pn, the following claims hold:

(a) At most rX + 1 points of X are collinear.

(b) If HFX(rX) = HFX(rX − 1) + 1 = HFX(rX − 2) + 2 then precisely

rX + 1 points of X are collinear.

4



The Canonical Module

The graded R-module ωR = HomK [x0](R,K [x0])(−1) is called the

canonical module of R. We have

HFωR
(−rX) = 0 < HFωR

(−rX + 1) < · · · < HFωR
(1) = deg(X) = · · ·

Theorem (Geramita, K, Robbiano)
For a finite set of points X in Pn, we have equivalent conditions:

(a) The set X has the Cayley-Bacharach property, i.e., every

hypersurface of degree rX − 1 which passes through all points of X
but one, automatically passes through the remaining point.

(b) The multiplication map RrX−1 ⊗ (ωR)−rX+1 −→ (ωR)0 is

non-degenerate.
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2. Kähler Differentials

“So, what’s your superpower?”

“I’m rich.”

(Tony Stark)

X ⊂ Pn 0-dimensional subscheme

R = P/IX = K [x0, . . . , xn]/IX homogeneous coordinate ring of X
µ : R ⊗K R −→ R multiplication map

J = ker(µ) = 〈xi ⊗ 1− 1⊗ xi | i = 0, . . . , n〉
The finitely generated graded R-module Ω1

R/K = J/J2 is called the

module of Kähler differentials of R/K (or of X).

The map d : R −→ Ω1
R/K given by df = f ⊗ 1− 1⊗ f + J2 is called

the universal derivation of R/K .
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Computing Ω1
R/K

For P = K [x0, . . . , xn], we have Ω1
P/K = P dx0 ⊕ · · · ⊕ P dxn.

Theorem
We have Ω1

R/K = Ω1
P/K/(IXΩ1

P/K + dIX). In other words, there is a

homogeneous exact sequence

0 −→ G(−1) −→ Rn+1(−1) −→ Ω1
R/K −→ 0

where G is generated by the tuples ( ∂f
∂x0
, . . . , ∂f

∂xn
) with f ∈ IX and

where (g0, . . . , gn) is mapped to g0dx0 + · · ·+ gndxn on the

right-hand side.
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The Hilbert Function of Ω1
R/K

For i ∈ Z, let HFΩ1
R/K

(i) = dimK (Ω1
R/K )i . The map HFΩ1

R/K
: Z→ Z

is called the Hilbert function of Ω1
R/K .

Theorem
(a) HFΩ1

R/K
(i) = 0 for i ≤ 0.

(b) HFΩ1
R/K

(i) has a constant value HPΩ1 := HP(Ω1
R/K ) for i � 0.

(c) Let riΩ1 := ri(Ω1
R/K ) be the regularity index of Ω1

R/K , i.e., the

smallest number j such that HFΩ1
R/K

(i) = HP(Ω1
R/K ) for i ≥ j . Then

we have ri(Ω1
R/K ) ≥ rX + 1 and if ri(Ω1

R/K ) > rX + 1 then

HFΩ1
R/K

(rX + 1) > · · · > HFΩ1
R/K

(riΩ1)
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Kähler Differential m-Forms

For m ≥ 0, we let Ωm
R/K = Λm

R Ω1
R/K and call it the module of

Kähler differential m-forms of R/K (or of X).

The exterior algebra ΛR Ω1
R/K =

⊕
i≥0 Ωm

R/K is called the Kähler

differential algebra of R/K (or of X).

Theorem (Computing Ωm
R/K)

For every m ≥ 1, we have Ωm
R/K = Ωm

P/K/(IXΩm
P/K + dIX ∧ Ωm−1

P/K ).

This allows us to compute a presentation of Ωm
R/K . The finitely ge-

nerated graded R-module Ωm
R/K has a constant Hilbert polynomial

HPΩm and a regularity index riΩm which we can compute as well.
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Example
In the projective plane P2 over K = Q, let X be a set of 6 points on

an irreducible conic, and let Y be a set of 6 points on a reducible

conic, e.g., Y = {(1 : −1 : 0), (1 : 1 : 0), (1 : 2, 0), (1 : 0 : −1),

(1 : 0 : 1), (1 : 0 : 2)} ⊂ Z(x1x2). Then we have

HFX = HFY : 1 3 5 6 6 · · · , the graded free resolutions of both

coordinate rings are

0 −→ P(−5) −→ P(−2)⊕ P(−3) −→ P −→ R −→ 0

and the HF of Ω1
RX/K

and Ω1
RY/K

agree: 0 3 8 11 10 7 6 6 · · ·
However, HFΩ2

RX/K
: 0 0 3 6 4 1 0 0 · · · and

HFΩ2
RY/K

: 0 0 3 6 5 1 0 0 · · · differ.
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Questions

(1) What is the Hilbert polynomial of Ωm
R/K ?

(2) What is the regularity index of Ωm
R/K ? Do we have good bounds

for it?

(3) Which geometric properties of X can we characterize using the

Hilbert functions of Ωm
R/K ?
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3. Normalization

Darth Vader: You have learned much, young one.

Luke: You’ll find I’m full of surprises.

(from Star Wars - Episode V)

X 0-dimensional subscheme of Pn

R = P/IX homogeneous coordinate ring of X
Qh(R) = { ab | a, b ∈ R, b homogeneous non-zerodivisor }

homogeneous quotient ring of R

Lemma
Qh(R) = Rx0
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The Affine Coordinate Ring

By assumption, we have X ⊆ D+(x0) ∼= An.

S ∼= R/〈x0 − 1〉 ∼= K [x1, . . . , xn]/I dehX affine coordinate ring of X

For i ≥ rX, we have Ri
∼= S x i0 via f 7→ f deh x i0.

Theorem
(a) Qh(R) ∼= S [x0, x

−1
0 ]

(b) R̃ = S [x0] ⊆ Qh(R) is an integral extension of R via f 7→ f deh xd0
for f ∈ Rd .

(c) R̃ is the integral closure of R in Qh(R) iff X is reduced.
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Theorem

Let R̃ = S [x0].

(a) Ω1
R̃/K

= S [x0]dx0 ⊕ K [x0]⊗ Ω1
S/K

(b) HFΩ1
R̃/K

(0) = dimK (Ω1
S/K ) and for i ≥ 1 we have

HFΩ1
R̃/K

(i) = dimK (Ω1
S/K ) + dimK (S)

(c) The scheme X is reduced iff Ω1
S/K = 0.
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4. Regularity Bounds

I don’t know why the sacrifice didn’t work.

The science was so solid.

(King Julien)

X 0-dimensional subscheme of Pn

R = P/IX homogeneous coordinate ring of X

Theorem
(a) For i ≥ 2rX + 1, the multiplication by x0 yields an isomorphism

µ : (Ω1
R/K )i −→ (Ω1

R/K )i+1.

(b) ri(Ω1
R/K ) ≤ 2 riX +1
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Note that the monomorphism ı : R ↪→ R̃ = S [x0] induces a canonical

R-module homomorphism ψ : Ω1
R/K −→ Ω1

R̃/K
.

Its kernel is the torsion submodule of Ω1
R/K , i.e.,

TΩ1
R/K = ker(ψ) = {w ∈ Ω1

R/K | x
i
0w = 0 for some i ≥ 1}.

Theorem
(a) For i ≥ 2rX + 1, we have (TΩ1

R/K )i = 0 and

ψi : (Ω1
R/K )i −→ (Ω1

R̃/K
)i ∼= S [x0]i−1dx0 ⊕ x i0 · Ω1

S/K

is an isomorphism of K -vector spaces.

(b) We have HP(Ω1
R/K ) = deg(X) + dimK (Ω1

S/K ).
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For the ring R̃ = S [x0], we can compute Ωm
R̃/K

as follows.

Theorem
(a) Ωm

R̃/K
∼= K [x0]⊗ Ωm

S/K ⊕ K [x0]dx0 ∧ Ωm−1
S/K

(b) The canonical R-module homomorphism Λmψ : Ωm
R/K −→ Ωm

R̃/K

is an isomorphism in degrees ≥ 2rX + m.

(c) HP(Ωm
R/K ) = dimK (Ωm

S/K ) + dimK (Ωm−1
S/K ).

(d) ri(Ωm
R/K ) ≤ 2rX + m
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5. Application to Points in the

Plane

Haters will see you walk on water and say:

“It’s because he can’t swim.”

(Anonymous)

X ⊂ P2 finite set of s points

R = P/IX = K [x0, x1, x2]/IX homogeneous coordinate ring

S = K [x1, x2]/I dehX affine coordinate ring of X in D+(x0) ∼= A2

Example
For s = 3, we have HFX : 1 2 3 3 · · · if the three points are collinear

and HFX : 1 3 3 · · · otherwise.
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Example (Four Points in the Plane)
Let s = 4.

(a) We have HFX : 1 2 3 4 4 · · · iff the four points are collinear.

(b) Otherwise, we have HFX : 1 3 4 4 · · · .
If the multiplication map R1 ⊗ (ωR)−1 −→ (ωR)0 is non-degenerate

then X is the complete intersection of two conics.

(c) Otherwise, X consists of three points on a line and one point off

the line.
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Example (Five Points in the Plane)
Let s = 5.

(a) X consists of 5 points on a line iff HFX : 1 2 3 4 5 5 · · · .

(b) X consists of 4 points on a line and one point off the line iff

HFX : 1 3 4 5 5 · · · .

(c) Suppose that no four points of X are collinear. Then we have

HFX : 1 3 5 5 · · · . The set X is contained in the union of two lines

iff HFΩ2
R/K

: 0 0 3 5 2 0 · · · .

(d) No three points of X are collinear iff HF : 1 3 5 5 · · · and

HFΩ2
R/K

: 0 0 3 5 1 0 · · · . In this case X is contained in a unique

non-singular conic.
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THE END

Give a man a mask,

and he will show you his true face.

(Oscar Wilde)

Thank you very much for your attention!
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