Differential Methods for 0-dimensional Schemes

Martin Kreuzer

University of Passau

martin.kreuzer@uni-passau.de

Symposium in Honour of Dilip Patil, July 29, 2021

Contents

- **Zero-dimensional Schemes**
- **Kähler Differentials**
- **Normalization**
- **Regularity Bounds**
- 5) Application to Points in the Plane

This is joint work with Tran N. K. Linh (Hue University) and Le N. Long (Hue University / Passau University).

[1. Zero-dimensional Schemes](#page-2-0)

You can teach an old dog new tricks if the old dog wants to learn. (Tip O'Neill)

 $P = K[x_0, \ldots, x_n]$ polynomial ring over a field K of characteristic 0 $I = \langle f_1, \ldots, f_m \rangle$ homogeneous saturated ideal in P \mathbb{P}^n projective space over $\overline{\mathsf{K}}$ $\mathbb{X} = \mathcal{Z}(I) \subseteq \mathbb{P}^n$ 0-dimensional subscheme $R = P/I$ homogeneous coordinate ring of X is a 1-dimensional Cohen-Macaulay ring $x_0 \in R$ is a assumed to be a non-zerodivisor

The Hilbert Function

The map $HF_X: \mathbb{Z} \longrightarrow \mathbb{Z}$ given by $HF_X(i) = \dim_K(R_i)$ is called the Hilbert function of X. It satisfies

 $1 = HF_{\mathbb{X}}(0) < HF_{\mathbb{X}}(1) < \cdots < HF_{\mathbb{X}}(r_{\mathbb{X}}) = deg(\mathbb{X}) = HF_{\mathbb{X}}(r_{\mathbb{X}} + 1) =$

 \cdots where $r_{\mathbb{X}}$ is called the regularity index of $\mathbb X$

Theorem (Bigatti, Geramita)

Given a set of points X in \mathbb{P}^n , the following claims hold:

(a) At most $r_{\mathbb{X}} + 1$ points of \mathbb{X} are collinear.

(b) If $\text{HF}_{\mathbb{X}}(r_{\mathbb{X}}) = \text{HF}_{\mathbb{X}}(r_{\mathbb{X}} - 1) + 1 = \text{HF}_{\mathbb{X}}(r_{\mathbb{X}} - 2) + 2$ then precisely $r_{\mathbb{X}} + 1$ points of \mathbb{X} are collinear.

The Canonical Module

The graded R -module $\omega_R \, = \, \underline{\mathrm{Hom}}_{K[x_0]}(R,K[x_0])(-1)$ is called the canonical module of R. We have

 $\mathop{\rm HF}\nolimits_{\omega_{\mathcal{R}}}(-r_{\mathbb{X}}) = 0 < \mathop{\rm HF}\nolimits_{\omega_{\mathcal{R}}}(-r_{\mathbb{X}} + 1) < \cdots < \mathop{\rm HF}\nolimits_{\omega_{\mathcal{R}}}(1) = \deg(\mathbb{X}) = \cdots$

Theorem (Geramita, K, Robbiano)

For a finite set of points X in \mathbb{P}^n , we have equivalent conditions: (a) The set X has the Cayley-Bacharach property, i.e., every hypersurface of degree $r_{\text{X}} - 1$ which passes through all points of $\mathbb X$ but one, automatically passes through the remaining point. (b) The multiplication map $R_{r\times -1}\otimes (\omega_R)_{-r\times +1}\longrightarrow (\omega_R)_0$ is non-degenerate.

2. Kähler Differentials

"So, what's your superpower?"

"I'm rich."

(Tony Stark)

 $\mathbb{X} \subset \mathbb{P}^n$ 0-dimensional subscheme $R = P/I_{\mathbb{X}} = K[x_0, \ldots, x_n]/I_{\mathbb{X}}$ homogeneous coordinate ring of \mathbb{X} $\mu: R \otimes_K R \longrightarrow R$ multiplication map $J = \mathsf{ker}(\mu) = \langle \mathsf{x}_i \otimes 1 - 1 \otimes \mathsf{x}_i \mid i = 0, \ldots, n \rangle$ The finitely generated graded R -module $\Omega^1_{R/K}=\left.J/J^2\right.$ is called the module of Kähler differentials of R/K (or of \mathbb{X}). The map $d: \ R \longrightarrow \Omega^1_{R/K}$ given by $d f = f \otimes 1 - 1 \otimes f + J^2$ is called the universal derivation of R/K .

Computing Ω^1_R R/K

For
$$
P = K[x_0, ..., x_n]
$$
, we have $\Omega^1_{P/K} = P dx_0 \oplus \cdots \oplus P dx_n$.

Theorem

We have $\Omega^1_{R/K}=\Omega^1_{P/K}/(I_{\mathbb{X}}\Omega^1_{P/K}+dI_{\mathbb{X}}).$ In other words, there is a homogeneous exact sequence

$$
0\;\longrightarrow\; {\cal G}(-1)\; \longrightarrow\; R^{n+1}(-1)\; \longrightarrow\; \Omega^1_{R/K}\; \longrightarrow\; 0
$$

where G is generated by the tuples ($\frac{\partial f}{\partial x}$ $\frac{\partial f}{\partial x_0},\ldots,\frac{\partial f}{\partial x_n}$ $\frac{\partial f}{\partial x_n}$) with $f \in I_{\mathbb{X}}$ and where (g_0, \ldots, g_n) is mapped to $g_0 dx_0 + \cdots + g_n dx_n$ on the right-hand side.

The Hilbert Function of Ω^1_k R/K

For $i\in\Z$, let $\mathrm{HF}_{\Omega^1_{R/K}}(i)=\sf{dim}_K(\Omega^1_{R/K})_i.$ The map $\mathrm{HF}_{\Omega^1_{R/K}}:\Z\to\Z$ is called the **Hilbert function** of $\Omega^1_{R/K}.$

Theorem

(a) $\operatorname{HF}_{\Omega^1_{R/K}}(i) = 0$ for $i \leq 0$. (b) $\operatorname{HF}_{\Omega^1_{R/K}}(i)$ has a constant value $\operatorname{HP}_{\Omega^1}:=\operatorname{HP}(\Omega^1_{R/K})$ for $i\gg0.$ (c) Let $\mathrm{ri}_{\Omega^1}:=\mathrm{ri}(\Omega^1_{R/K})$ be the regularity index of $\Omega^1_{R/K}$, i.e., the smallest number j such that $\mathop{\rm HF}\nolimits_{\Omega^1_{R/K}}(i) = \mathop{\rm HP}\nolimits({\Omega^1_{R/K}})$ for $i \geq j.$ Then we have $\mathrm{ri}(\Omega^1_{R/K})\geq r_{\mathbb{X}}+1$ and if $\mathrm{ri}(\Omega^1_{R/K})>r_{\mathbb{X}}+1$ then

$$
\mathop{\rm HF}\nolimits_{\Omega^1_{R/K}}(\mathop{\prime_\mathbb{X}}+1)>\cdots>\mathop{\rm HF}\nolimits_{\Omega^1_{R/K}}(\mathop{\rm ri}\nolimits_{\Omega^1})
$$

Kähler Differential m -Forms

For $m\,\geq\, 0$, we let $\Omega^m_{R/K}\,=\,\Lambda^m_R\,\,\Omega^1_{R/K}$ and call it the **module of Kähler differential m-forms of R/K (or of X).**

The exterior algebra $\Lambda_R\,\Omega^1_{R/K}\,=\,\bigoplus_{i\geq 0}\Omega^m_{R/K}$ is called the <code>Kähler</code> **differential algebra** of R/K (or of X).

Theorem (Computing Ω^m_R $_{R/K}^m$)

For every $m\geq 1$, we have $\Omega^m_{R/K}=\Omega^m_{P/K}/(I_{\mathbb{X}}\Omega^m_{P/K}+dI_{\mathbb{X}}\wedge\Omega^{m-1}_{P/K})$ $_{P/K}^{m-1}).$

This allows us to compute a presentation of $\Omega^m_{R/K}$. The finitely generated graded R -module $\Omega^m_{R/K}$ has a constant Hilbert polynomial HP_{Ω^m} and a regularity index ri_{Ω^m} which we can compute as well.

Example

In the projective plane \mathbb{P}^2 over $\mathcal{K}=\mathbb{Q}$, let $\mathbb X$ be a set of 6 points on an irreducible conic, and let Y be a set of 6 points on a reducible conic, e.g., $\mathbb{Y} = \{ (1:-1:0), (1:1:0), (1:2,0), (1:0:-1),$ $(1:0:1), (1:0:2)$ \subset $\mathcal{Z}(x_1x_2)$. Then we have $HF_{\mathbb{X}} = HF_{\mathbb{Y}}$: 13566 \cdots , the graded free resolutions of both coordinate rings are

$$
0\;\longrightarrow\;{\textit P}(-5)\;\longrightarrow\;{\textit P}(-2)\oplus{\textit P}(-3)\;\longrightarrow\;{\textit P}\;\longrightarrow\;{\textit R}\;\longrightarrow\;0
$$

and the HF of $\Omega^1_{R_{\mathbb{X}}/K}$ and $\Omega^1_{R_{\mathbb{Y}}/K}$ agree: 0 3 8 11 10 7 6 6 $\,\cdots$ However, $\mathop{\rm HF}\nolimits_{\Omega^2_{R_{\mathbb{X}}/K}}:\ 0\ 0\ 3\ 6\ 4\ 1\ 0\ 0\ \cdots\$ and $\overline{\mathrm{HF}_{\Omega^2_{R_{\mathbb{Y}}/\mathcal{K}}}}\,:\,0\,0\,3\,6\,5\,1\,0\,0\,\cdots\,$ differ.

Questions

 (1) What is the Hilbert polynomial of $\Omega^m_{R/K}$? (2) What is the regularity index of $\Omega^m_{R/K}$? Do we have good bounds for it?

(3) Which geometric properties of X can we characterize using the Hilbert functions of $\Omega^m_{R/K}$?

[3. Normalization](#page-11-0)

Darth Vader: You have learned much, young one. Luke: You'll find I'm full of surprises. (from Star Wars - Episode V)

 $\mathbb X$ 0-dimensional subscheme of $\mathbb P^n$ $R = P/I_{\mathbb{X}}$ homogeneous coordinate ring of \mathbb{X} $Q^h(R) = \{\frac{a}{b}$ $\frac{a}{b} \mid a, b \in R$, b homogeneous non-zerodivisor $\}$ homogeneous quotient ring of R

Lemma

$$
Q^h(R)=R_{x_0}
$$

The Affine Coordinate Ring

By assumption, we have $\mathbb{X} \subseteq D_{+}(x_{0}) \cong \mathbb{A}^{n}$.

 $S \cong R/\langle x_0-1 \rangle \cong K[x_1,\ldots,x_n]/I^{\rm deh}_\mathbb{X}$ affine coordinate ring of $\mathbb X$ For $i \geq r_{\mathbb{X}}$, we have $R_i \cong S x_0^i$ via $f \mapsto f^{\text{deh}} x_0^i$.

Theorem

(a) $Q^h(R) \cong S[x_0, x_0^{-1}]$ **(b)** $\tilde{R} = S[x_0] \subseteq Q^h(R)$ is an integral extension of R via $f \mapsto f^{\text{deh}}x_0^a$ for $f \in R_d$.

(c) \widetilde{R} is the integral closure of R in $Q^h(R)$ iff $\mathbb X$ is reduced.

Theorem \sim \sim

Let
$$
\widetilde{R} = S[x_0]
$$
.
\n(a) $\Omega^1_{\widetilde{R}/K} = S[x_0]dx_0 \oplus K[x_0] \otimes \Omega^1_{S/K}$
\n(b) HF _{$\Omega^1_{\widetilde{R}/K}$} (0) = dim_K($\Omega^1_{S/K}$) and for $i \ge 1$ we have

$$
\operatorname{HF}_{\Omega^1_{\widetilde{R}/K}}(i) = \dim_K(\Omega^1_{S/K}) + \dim_K(S)
$$

(c) The scheme $\mathbb X$ is reduced iff $\Omega^1_{S/K}=0.$

[4. Regularity Bounds](#page-14-0)

I don't know why the sacrifice didn't work. The science was so solid. (King Julien)

 $\mathbb X$ 0-dimensional subscheme of $\mathbb P^n$

 $R = P/I_{\mathbb{X}}$ homogeneous coordinate ring of \mathbb{X}

Theorem

(a) For $i > 2r_{\mathbb{X}} + 1$, the multiplication by x_0 yields an isomorphism $\mu: \ (\Omega^1_{R/K})_i \longrightarrow (\Omega^1_{R/K})_{i+1}.$ (b) $\operatorname{ri}(\Omega^1_{R/K}) \leq 2 \operatorname{ri}_{\mathbb{X}} + 1$

Note that the monomorphism $\imath: R \hookrightarrow \widetilde{R} = S[x_0]$ induces a canonical R -module homomorphism $\psi: \, \Omega^1_{R/K} \longrightarrow \Omega^1_{\widehat{F}}$ $\frac{1}{\widetilde{R}/K}$. Its kernel is the **torsion submodule** of $\Omega^1_{R/K}$, i.e., $T\Omega^1_{R/K} = \text{ker}(\psi) = \{w \in \Omega^1_{R/K} \mid x_0^i w = 0 \text{ for some } i \geq 1\}.$

Theorem

(a) For
$$
i \geq 2r_{\mathbb{X}} + 1
$$
, we have $(T\Omega^1_{R/K})_i = 0$ and

$$
\psi_i: (\Omega^1_{R/K})_i \longrightarrow (\Omega^1_{\widetilde{R}/K})_i \cong S[x_0]_{i-1} dx_0 \oplus x_0^i \cdot \Omega^1_{S/K}
$$

is an isomorphism of K-vector spaces.

(b) We have
$$
HP(\Omega^1_{R/K}) = \deg(\mathbb{X}) + \dim_K(\Omega^1_{S/K}).
$$

For the ring
$$
\tilde{R} = S[x_0]
$$
, we can compute $\Omega^m_{\tilde{R}/K}$ as follows.

Theorem

 (a) $\Omega_{\widetilde{\rho}}^{m}$ $R_{\widetilde{R}/K}^m \cong K[x_0] \otimes \Omega^m_{S/K} \ \oplus \ K[x_0]dx_0 \wedge \Omega^{m-1}_{S/K}$ S/K **(b)** The canonical R-module homomorphism $\Lambda^m \psi : \ \Omega^m_{R/K} \longrightarrow \Omega^m_{\widetilde{R}}$ R/K is an isomorphism in degrees $\geq 2r_{\mathbb{X}} + m$. (c) $\text{HP}(\Omega^m_{R/K}) = \text{dim}_K(\Omega^m_{S/K}) + \text{dim}_K(\Omega^{m-1}_{S/K}).$ (d) $\operatorname{ri}(\Omega^m_{R/K}) \leq 2r_{\mathbb{X}} + m$

[5. Application to Points in the](#page-17-0) [Plane](#page-17-0)

Haters will see you walk on water and say: "It's because he can't swim." (Anonymous)

 $\mathbb{X}\subset\mathbb{P}^2$ finite set of s points $R = P/I_{\mathbb{X}} = K[x_0, x_1, x_2]/I_{\mathbb{X}}$ homogeneous coordinate ring $\mathcal{S} = \mathcal{K}[{\sf x}_1,{\sf x}_2]/\mathit{I}^{\mathrm{deh}}_{\mathbb{X}}$ affine coordinate ring of \mathbb{X} in $D_+({\sf x}_0) \cong \mathbb{A}^2$

Example

For $s = 3$, we have HF_X : 1 2 3 3 \cdots if the three points are collinear and $HF_{\mathbb{X}}$: 133 \cdots otherwise.

Example (Four Points in the Plane)

Let $s = 4$.

(a) We have HF_X : 1 2 3 4 4 \cdots iff the four points are collinear.

(b) Otherwise, we have $HF_{\mathbb{X}}$: 1 3 4 4 \cdots .

If the multiplication map $R_1 \otimes (\omega_R)_{-1} \longrightarrow (\omega_R)_0$ is non-degenerate then X is the complete intersection of two conics.

 (c) Otherwise, X consists of three points on a line and one point off the line.

Example (Five Points in the Plane)

Let $s = 5$.

(a) $\mathbb X$ consists of 5 points on a line iff $\text{HF}_{\mathbb X}$: 123455 \cdots .

(b) X consists of 4 points on a line and one point off the line iff $HF_{\mathbb{X}}$: 13455 · · · .

(c) Suppose that no four points of X are collinear. Then we have $HF_{\mathbb{X}}$: 1355 \cdots . The set $\mathbb X$ is contained in the union of two lines iff $\mathop{\rm HF}\nolimits_{\Omega^2_{R/K}}$: 003520 \cdots . (d) No three points of X are collinear iff HF : 1355 \cdots and $\mathop{\rm HF}\nolimits_{\Omega^2_{R/K}}:\ 0\ 0\ 3\ 5\ 1\ 0\ \cdots$. In this case $\mathbb X$ is contained in a unique non-singular conic.

THE END

Give a man a mask, and he will show you his true face. (Oscar Wilde)

Thank you very much for your attention!