The Waring rank of binary binomial forms

Shreedevi K. Masuti

joint work with Laura Brustenga

Symposium on superannuation of Prof. Dilip P. Patil

IIT Dharwad, Dharwad

July 30, 2021

Waring rank

• Let $S := \mathbb{C}[x_0, \ldots, x_n]$ and F be a homogeneous polynomial in S of degree d. It is well-known that there exist linear forms L_i where $r \leq \binom{n+d}{n}$ such that $F = L_1^d + \cdots + L_r^d$.

Waring rank of F

$$\mathsf{rk}(F) := \min\{r : F = \sum_{i=1}^{r} L_i^d, \ L_i \in S_1\}$$

Example:

$$xy = \frac{1}{4}(x+y)^2 - \frac{1}{4}(x-y)^2$$

Question: Can we write $xy = L^2$ for some linear form L in $\mathbb{C}[x, y]$? Easy: No !

Hence rk(xy) = 2.

Waring rank of quadratic forms

- Quadratic Form: Let $F = \sum_{1 \le i,j \le n} a_{ij} x_i x_j = \mathbf{x}^T A \mathbf{x}$ where A is a symmetric matrix and $\mathbf{x} = (x_0, x_1, \dots, x_n)^T$
- Diagonalizing the symmetric matrix A we can write $F = y_1^2 + \cdots + y_r^2$ for suitable linear forms $y_i \in S_1$ and $r = \operatorname{rank}(A)$.
- Hence rk(F) = rank(A)

Waring Problem

The series of problems which ask for information on minimal Waring expansions for forms of degree d is usually called Waring problem for forms.

Why the name Waring problem ?

Lagrange (1770): Every positive integer can be written as the sum of four squares

Waring's conjecture(~ 1770): For all $k \in \mathbb{N}$, there exists a g(k) such that every $a \in \mathbb{N}$ can be written as the sum of at most g(k) kth powers of positive integers.

Hilbert (1909): g(k) exists for every k

 $g(k) := \min\{s :$ every integer can be written as the sum of s kth powers}

 $G(k) := \min\{s :$

every sufficiently large integer can be written as the sum of *s* kth powers}

Generic rank

Generic rank

G(n, d) := rank of the generic degree d form in S

Theorem (Alexander-Hirschowitz'90)

$$G(n+1,d) = \left\lceil \frac{\binom{n+d}{d}}{n+1} \right\rceil except (n,d) = (n,2), (2,4), (3,4), (4,3), (4,4).$$

This does not (much) help to compute the rank of a given specific form!

Example

$$G(2,3) = 2$$
, but $rk((x_1^3 + x_2^3)) = 2$ and $rk(x_1x_2^2) = 3$.

Apolarity

 $T = \mathbb{C}[X_0, \dots, X_n]$. Consider S as a T-module by means of the apolar action:

$$X_0^{a_0}\ldots X_n^{a_n}\circ F:=\left(\frac{\partial^{a_0}}{\partial x_0^{a_0}}\cdots \frac{\partial^{a_n}}{\partial x_n^{a_n}}\right)(F)$$

Perp/Apolar ideal

$$F^{\perp} := \{ \partial \in T : \partial \circ F = 0 \}$$
 is an ideal of T

•
$$X_1^2 \circ x_1^2 x_2 = 2x_2$$

•
$$(x_0x_1)^{\perp} = (X_0^2, X_1^2)$$

Fact: S/F^{\perp} is an Artinian Gorenstein ring.

Apolarity lemma

$$F = L_1^d + \dots + L_r^d$$
 if and only if $I(X) \subseteq F^{\perp}$ where
 $X = \{[L_1], \dots, [L_r]\} \subseteq \mathbb{P}^n_{\mathbb{C}}$ is a set of *r* distinct points.

Sylvester's algorithm

Let
$$S = \mathbb{C}[x, y]$$
 and $F \in S_d$.
Recall: $G(2, d) = \left\lceil \frac{d+1}{2} \right\rceil$
Fact: $F^{\perp} = (g_1, g_2)$ where degree g_1 + degree $g_2 = d + 2$.

Sylvester's algorithm

Assume that degree $g_1 \leq \text{degree } g_2$. Then $\mathsf{rk}(F) = \begin{cases} \text{degree } g_1 & \text{if } g_1 \text{ is square-free} \\ \text{degree } g_2 & \text{if } g_1 \text{ is not square-free} \end{cases}$

Example

Let $F = x^a y^b$ where $1 \le a \le b$. Then $F^{\perp} = (X^{a+1}, Y^{b+1})$. Thus $\mathsf{rk}(x^a y^b) = b + 1$.

Carlini-Catalisano-Geramita (2012): Waring rank of monomials in any number of variables

What if F is a binomial ?

Strassen's Conjecture: If F_1, \ldots, F_m are forms in distinct set of variables, then $rk(F_1 + \cdots + F_m) = rk(F_1) + \cdots + rk(F_m)$

Carlini-Catalisano-Geramita (2012): Strassen's conjecture is true if F_i are monomials

Remarks:

- $\mathsf{rk}(x^d + y^d) = 2$
- Let M_1 , M_2 be distinct monomials in $\mathbb{C}[x, y]$. It is easy to see that $\operatorname{rk}(M_1 + M_2) \leq \operatorname{rk}(M_1) + \operatorname{rk}(M_2)$. But the actual rank could be very less.
- For instance, $F = x^2y^3 + x^3y^2$. Here, $rk(x^2y^3) = rk(x^3y^2) = 4$. But, rk(F) = 3.

Example

Let
$$F = x^r y^r (y + x) = x^r y^{r+1} + x^{r+1} y^r$$
. Then
 $F^{\perp} = (g_1 := X^{r+1} - X^r Y + \dots + (-1)^{r+1} Y^{r+1}, Y^{r+2}).$

Notice that g_1 is square-free. Thus rk(F) = r + 1.

Example

Let $F = xy^4 + x^2y^3$. Then $F^{\perp} = (x^3, g_2)$ where degree $g_2 = 4$. Here $\mathsf{rk}(F) = 4$.

Result

Theorem

Let
$$F = ax^{r}y^{s+\alpha} + bx^{r+\alpha}y^{s}$$
 be a binomial form where $a, b \neq 0$,
 $0 \leq r \leq s$ and $\alpha \geq 1$.
(1) If $s \geq r + \alpha$, then $rk \ F = s + 1$.
(2) Suppose that $0 \leq r \leq s < r + \alpha$. Set $\delta := r + \alpha - s$. Then

$$rk \ F = \begin{cases} s+2 & \text{if } r \equiv 0 \mod \alpha \text{ where } \delta \geq 2 \text{ and } r = s \\ r + \alpha - j & \text{if } r \equiv j \mod \alpha \text{ where } 1 \leq j < \lceil \frac{\delta-1}{2} \rceil$$
, $OR \ j = 0 \text{ and } r < s < j \leq r + 1 \text{ if } r \equiv j \mod \alpha \text{ where } 1 \leq j < \lceil \frac{\delta-1}{2} \rceil$, $if \ r \equiv j \mod \alpha \text{ where } 1 < j \leq \lceil \frac{\delta-1}{2} \rceil$
 $s + j \quad \text{if } r \equiv j \mod \alpha \text{ where } \max\{\delta - 1, 1\} \leq j \leq \min\{\alpha - 1, r + \alpha + 1\}$, $if \ r \equiv j \mod \alpha \text{ where } \delta + 1 \leq i \leq \alpha - 1$

In particular, the Waring rank of F is independent of a and b.

Sketch of Proof

- We use Sylvester's algorithm to compute rk(F)
- We computed $g_1 \in F^{\perp}$
- To show that g_1 is a form of least degree in F^{\perp} we computed the Hilbert function of S/F^{\perp}
- Depending upon g_1 is square-free or not we have determined the rank of F

Waring Problem over arbitrary field

• Let $S := K[x_0, ..., x_n]$ where K is a field and F be a homogeneous polynomial in S of degree d. It is well-known that there exist linear forms L_i where $r \le {\binom{n+d}{n}}$ such that $F = a_1 L_1^d + \cdots + a_r L_r^d$.

K-Waring rank of F

$$\mathsf{rk}_{\mathcal{K}}(F) := \min\{r : F = \sum_{i=1}^{r} a_i L_i^d, \ L_i \in S_1\}$$

- Interesting: $K = \mathbb{R}$
- Generic rank over $\mathbb R$ is not known

Apolarity lemma

$$F = a_1 L_1^d + \dots + a_r L_r^d$$
 if and only if $I(X) \subseteq F^{\perp}$ where $X = \{[L_1], \dots, [L_r]\} \subseteq \mathbb{P}_K^n$ is a set of r distinct points.

Further problems

- Waring rank of real monomials in any number of variables is not known
- [Boij-Carlini-Geramita(2011)]: $rk_{\mathbb{R}}(x^ay^b) = a + b$ where $a, b \neq 0$
- No algorithm in $\mathbb{R}[x, y]!$
- What about the Waring rank of real binary binomials?

Proposition

Consider a real binomial $F = x^r y^s (ay^{\alpha} + bx^{\alpha})$ with $ab \neq 0$. For α odd, the real Waring rank of F does not depend on the coefficients a, b. For α even, there are at most two different real Waring ranks for F, depending on the sign of ab.

Examples

Example 1: Let $F = x^r y^r (x \pm y)$ where $r \ge 1$. Then rk(F) = r + 1, but \mathbb{R} , $rk_{\mathbb{R}}(F) = 2r + 1$.

Example 2: We have $\operatorname{rk}_{\mathbb{R}}(x^3 - xy^2) = 3$ and $\operatorname{rk}_{\mathbb{R}}(x^3 + xy^2) = 2$. But $\operatorname{rk}(x^3 \pm xy^2) = \operatorname{rk}(y^3 \pm x^2y) = 2$ by our Theorem.

Further question

Reznick-Tokcan (2017): Does there exist a binary form of any degree with more than three different ranks (over different fields)

Thank you for the attention!

I wish Prof. Dilip Patil a very happy and healthy life ahead!

References

- J. E. Alexander and A. Hirschowitz, *Polynomial interpolation in several variables*, J. Algebraic Geom. 4 (1995), no. 2, 201–222.
- L. Brustenga and S. K. Masuti, *On the Waring rank of binary binomial forms*, to appear in Pacific Journal of Mathematics.
- E. Carlini, M. V. Catalisano, and A. V. Geramita, *The solution to the Waring problem for monomials and the sum of coprime monomials*, J. Algebra 370 (2012), 5–14
- A. larrobino and V. Kanev, *Power sums, Gorenstein algebras, and determinantal loci*, Lecture Notes in Mathematics, vol. 1721, Springer-Verlag, Berlin, 1999, Appendix C by larrobino and Steven L. Kleiman.