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Waring rank

• Let S := C[x0, . . . , xn] and F be a homogeneous polynomial in S of
degree d . It is well-known that there exist linear forms Li where
r ≤

(
n+d
n

)
such that F = Ld1 + · · ·+ Ldr .

Waring rank of F

rk(F ) := min{r : F =
∑r

i=1 L
d
i , Li ∈ S1}

Example:

xy =
1

4
(x + y)2 − 1

4
(x − y)2

Question: Can we write xy = L2 for some linear form L in C[x , y ] ?

Easy: No !

Hence rk(xy) = 2.



Waring rank of quadratic forms

• Quadratic Form: Let F =
∑

1≤i,j≤n aijxixj = xTAx where A is a

symmetric matrix and x = (x0, x1, . . . , xn)T

• Diagonalizing the symmetric matrix A we can write
F = y2

1 + · · ·+ y2
r for suitable linear forms yi ∈ S1 and r = rank(A).

• Hence rk(F ) = rank(A)

Waring Problem

The series of problems which ask for information on minimal Waring
expansions for forms of degree d is usually called Waring problem for
forms.



Why the name Waring problem ?

Lagrange (1770): Every positive integer can be written as the sum of
four squares
Waring’s conjecture(∼ 1770): For all k ∈ N, there exists a g(k) such
that every a ∈ N can be written as the sum of at most g(k) kth powers
of positive integers.

Hilbert (1909): g(k) exists for every k

g(k) := min{s :
every integer can be written as the sum of s kth powers}

G (k) := min{s :
every sufficiently large integer can be written as the sum of s kth powers}



Generic rank

Generic rank

G (n, d) := rank of the generic degree d form in S

Theorem (Alexander-Hirschowitz’90)

G (n + 1, d) =

⌈(
n+d
d

)
n + 1

⌉
except (n, d) = (n, 2), (2, 4), (3, 4), (4, 3), (4, 4).

This does not (much) help to compute the rank of a given specific form!

Example
G (2, 3) = 2, but rk((x31 + x32 )) = 2 and rk(x1x

2
2 ) = 3.



Apolarity

T = C[X0, . . . ,Xn]. Consider S as a T -module by means of the apolar
action:

X a0
0 . . .X an

n ◦ F :=

(
∂a0

∂xa00
· · · ∂

an

∂xann

)
(F )

Perp/Apolar ideal

F⊥ := {∂ ∈ T : ∂ ◦ F = 0} is an ideal of T

• X 2
1 ◦ x21 x2 = 2x2

• (x0x1)⊥ = (X 2
0 ,X

2
1 )

Fact: S/F⊥ is an Artinian Gorenstein ring.

Apolarity lemma

F = Ld1 + · · ·+ Ldr if and only if I (X ) ⊆ F⊥ where
X = {[L1], . . . , [Lr ]} ⊆ Pn

C is a set of r distinct points.



Sylvester’s algorithm

Let S = C[x , y ] and F ∈ Sd .

Recall: G (2, d) =
⌈
d+1
2

⌉
Fact: F⊥ = (g1, g2) where degree g1 + degree g2 = d + 2.

Sylvester’s algorithm

Assume that degree g1 ≤ degree g2. Then

rk(F ) =

{
degree g1 if g1 is square-free

degree g2 if g1 is not square-free

Example
Let F = xayb where 1 ≤ a ≤ b. Then F⊥ = (X a+1,Y b+1). Thus
rk(xayb) = b + 1.

Carlini-Catalisano-Geramita (2012): Waring rank of monomials in any
number of variables



What if F is a binomial ?

Strassen’s Conjecture: If F1, . . . ,Fm are forms in distinct set of variables,
then rk(F1 + · · ·+ Fm) = rk(F1) + · · ·+ rk(Fm)

Carlini-Catalisano-Geramita (2012): Strassen’s conjecture is true if Fi are
monomials
Remarks:

• rk(xd + yd) = 2

• Let M1, M2 be distinct monomials in C[x , y ]. It is easy to see that
rk(M1 + M2) ≤ rk(M1) + rk(M2). But the actual rank could be very
less.

• For instance, F = x2y3 + x3y2. Here, rk(x2y3) = rk(x3y2) = 4. But,
rk(F ) = 3.



Example

Let F = x ry r (y + x) = x ry r+1 + x r+1y r . Then

F⊥ = (g1 := X r+1 − X rY + · · ·+ (−1)r+1Y r+1,Y r+2).

Notice that g1 is square-free. Thus rk(F ) = r + 1.

Example

Let F = xy4 + x2y3. Then F⊥ = (x3, g2) where degree g2 = 4. Here
rk(F ) = 4.



Result

Theorem

Let F = ax ry s+α + bx r+αy s be a binomial form where a, b 6= 0,
0 ≤ r ≤ s and α ≥ 1.

(1) If s ≥ r + α, then rk F = s + 1.

(2) Suppose that 0 ≤ r ≤ s < r + α. Set δ := r + α− s. Then

rk F =



s + 2 if r ≡ 0 mod α where δ ≥ 2 and r = s

r + α− j if r ≡ j mod α where 1 ≤ j < d δ−1
2
e, OR j = 0 and r < s

s + j + 1 if r ≡ j mod α when δ is odd and j = δ−1
2

s + j if r ≡ δ − j mod α where 1 < j ≤ d δ−1
2
e

s + 1 if r ≡ j mod α where max{δ − 1, 1} ≤ j ≤ min{α− 1, δ}
r + α+ 1 if r ≡ j mod α where δ + 1 ≤ j ≤ α− 1

In particular, the Waring rank of F is independent of a and b.



Sketch of Proof

• We use Sylvester’s algorithm to compute rk(F )

• We computed g1 ∈ F⊥

• To show that g1 is a form of least degree in F⊥ we computed the
Hilbert function of S/F⊥

• Depending upon g1 is square-free or not we have determined the
rank of F



Waring Problem over arbitrary field

• Let S := K [x0, . . . , xn] where K is a field and F be a homogeneous
polynomial in S of degree d . It is well-known that there exist linear
forms Li where r ≤

(
n+d
n

)
such that F = a1L

d
1 + · · ·+ arL

d
r .

K -Waring rank of F

rkK (F ) := min{r : F =
∑r

i=1 aiL
d
i , Li ∈ S1}

• Interesting: K = R
• Generic rank over R is not known

Apolarity lemma

F = a1L
d
1 + · · ·+ arL

d
r if and only if I (X ) ⊆ F⊥ where

X = {[L1], . . . , [Lr ]} ⊆ Pn
K is a set of r distinct points.



Further problems

• Waring rank of real monomials in any number of variables is not
known

• [Boij-Carlini-Geramita(2011)]: rkR(xayb) = a + b where a, b 6= 0

• No algorithm in R[x , y ]!

• What about the Waring rank of real binary binomials?

Proposition

Consider a real binomial F = x ry s(ayα + bxα) with ab 6= 0. For α odd,
the real Waring rank of F does not depend on the coefficients a, b. For α
even, there are at most two different real Waring ranks for F , depending
on the sign of ab.



Examples

Example 1: Let F = x ry r (x ± y) where r ≥ 1. Then rk(F ) = r + 1, but
R, rkR(F ) = 2r + 1.

Example 2: We have rkR(x3 − xy2) = 3 and rkR(x3 + xy2) = 2. But
rk(x3 ± xy2) = rk(y3 ± x2y) = 2 by our Theorem.



Further question

Reznick-Tokcan (2017): Does there exist a binary form of any degree
with more than three different ranks (over different fields)



Thank you for the attention!



I wish Prof. Dilip Patil a very happy and healthy life
ahead!
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