On the Chern number of good filtrations of ideals

Jugal Verma

Indian Institute of Technology Bombay

Virtual Symposium in honour of Dilip Patil

29 July 2021

Outline

- I-good filtrations and their examples.
- ² Basic notation for Hilbert polynomials of *I*-good filtrations.
- The normal and tight Hilbert polynomials of ideals.
- The Rees ring and associated graded ring of an *I*-good filtration.
- Onjectures of Vasconcelos for the Chern number of a parameter ideal and the normal Chern number of an ideal.
- O Huckaba-Marley Theorem for e₁(𝓕) for an *I*-good filtration 𝓕 in a Cohen-Macaulay local ring.
- On a question of C. Huneke about F-rational rings.

Examples of *I*-good filtrations

- **Definition.** Suppose *I* is an ideal of a Noetherian ring *R*.
- A sequence of ideals *F* = {*I_n*}_{n∈ℤ} is called an *I*-filtration if for all *m*, *n* ∈ ℤ,
 (i) *I_{n+1} ⊆ I_n*, (ii) *I_mI_n ⊆ I_{m+n}*, (iii) *Iⁿ ⊆ I_n*.
- **③** An *I*-filtration is called *I*-good if $\exists k$ so that $I_{n+k} \subseteq I^n \forall n \in \mathbb{Z}$.
- **Q** Examples. The *I*-adic filtration $\{I^n\}$ is *I*-good.
- **2** We say that $x \in R$ is **integral** over *I* if

$$x^n + a_1 x^{n-1} + \cdots + a_n = 0$$
 for some $a_i \in I^i$ for all i .

• The integral closure of I is $\overline{I} = \{x \in R \mid x \text{ is integral over } I\}$.

Theorem. [D. Rees, 1961] Let (R, m) be a Noetherian local ring. Then R is analytically unramified

- \iff the filtration $\{\overline{I^n}\}$ is *I*-good for all ideals *I*,
- \iff there exists and m-primary ideal I so that $\{\overline{I^n}\}$ is I-good.

Hilbert function and polynomial of an I-good filtration

- Definition. Let R be a Noetherian ring of prime characteristic p and q = p^e. Let min(R) = {p₁, p₂, ..., p_r} be the set of minimal primes of R and R[°] = R \ ∪_{i=1}^r p_i. Let I = (a₁, a₂, ..., a_n).
- **2** The q^{th} Frobenius power of I is the ideal $I^{[q]} = (a_1^q, a_2^q, \dots, a_n^q)$.
- So The tight closure I* of an ideal I is the ideal

 $I^* = \{x \in R \mid \text{ there exists } c \in R^\circ \text{ so that } cx^q \in I^{[q]} \text{ for all large } q\}.$

- Definition. An element c ∈ R° is called a test element if whenever x ∈ I* then cx^q ∈ I^[q] for all q and all ideal I of R.
- Since $I \subseteq I^* \subseteq \overline{I}$, if R is analytically unramified, $\{(I^n)^*\}$ is I-good.
- Definition. Let (R, m) be a Noetherian local ring of dimension d. Let I be an m-primary ideal of R. The Hilbert function of an I-good filtration *F* = {I_n} is defined as: H_F(n) = λ(R/I_n).
- **Theorem.(Rees)** There exists a polynomial P_𝔅(x) ∈ Q[x] called the Hilbert polynomial of 𝔅 so that H_𝔅(n) = P_𝔅(n) for all large n.

The normal and the tight Hilbert polynomial of an ideal

Operations Definitions. The Hilbert polynomial of \mathcal{F} is written as

$$P_{\mathcal{F}}(x) = e_0(\mathcal{F}) {\binom{x+d-1}{d}} - e_1(\mathcal{F}) {\binom{x+d-2}{d-1}} + \cdots + (-1)^d e_d(\mathcal{F}).$$

- If $\mathcal{F} = \{(I^n)^*\}$ then we write $P_{\mathcal{F}}(x) = P_I^*(x), e_i(\mathcal{F}) = e_i^*(I).$
- $P_{I}^{*}(x)$ is called the **tight Hilbert polynomial** of *I*.
- **Operation.** The coefficient $e_1(\mathcal{F})$ is called the **Chern number** of \mathcal{F} .

Graded modules and algebras for *I*-filtrations

- **Optimition.** Let $\mathcal{F} = \{I_n \mid n \in \mathbb{Z}\}$ be an *I*-filtration. By convention $I_n = R$ for all $n \leq 0$. Let t be indeterminate.
 - **Rees algebra** of $\mathcal{F} = \mathcal{R}(\mathcal{F}) = \bigoplus_{n=0}^{\infty} I_n t^n$ mm **Extended Rees algebra** of $\mathcal{F} = \mathcal{R}'(\mathcal{F}) = \bigoplus_{n \in \mathbb{Z}} I_n t^n$ mm **Associated graded ring** of $\mathcal{F} = \mathcal{G}(\mathcal{F}) = \bigoplus_{n=0}^{\infty} I_n/I_{n+1}$
- **2** If $\mathcal{F} = \{I^n\}$ then these algebras are denoted by $\mathcal{R}(I), \mathcal{R}'(I)$, and $\mathcal{G}(I)$.
- **Theorem.** Let (R, \mathfrak{m}) be a *d*-dimensional local ring and $\mathcal{F} = \{I_n\}$ be an *I*-good filtration for an \mathfrak{m} -primary ideal *I*. Then $G(\mathcal{F})$ is a finitely generated G(I)-module. Moreover,

$$\dim \mathcal{R}'(\mathcal{F}) = d + 1, \ \dim \mathcal{G}(\mathcal{F}) = d \ \text{and} \ \dim \mathcal{R}(\mathcal{F}) = d + 1.$$

Solution An ideal $J \subset I_1$ is called a **reduction** of \mathcal{F} if $JI_n = I_{n+1}$ for all large n.

Results about $e_1(I)$

● Theorem. (Northcott. 1960) Let R be a Cohen-Macaulay local ring and I be an m-primary ideal. Then e₁(I) ≥ 0 with equality ⇐⇒ I is generated by a regular sequence.

Conjectures of W. Vasconcelos, 2008

- The negativity conjecture. For any ideal Q generated by a system of parameters, e₁(Q) < 0 if and only if R is not Cohen-Macaulay.</p>
- Source Theorem. (Mandal-Singh-Verma, 2010) Let R be a d-dimensional Noetherian local ring. Let J be an ideal generated by a system of parameters. Then e₁(J) ≤ 0.
- Partial solutions for the negativity conjecture were given by L. Ghezzi, J. Hong and W. Vasconcelos in 2009 and by M. Mandal, B. Singh and J. Verma in 2011.
- **Objective** Definition. A Noetherian local ring is called formally unmixed if for any associated prime \mathfrak{p} of the \mathfrak{m} -adic completion $\hat{R} \dim \hat{R}/\mathfrak{p} = \dim R$.
- L Ghezzi, S. Goto, J. Hong, T. T. Phuong, W. V. Vaconcelos settled the negativity conjecture in 2010 by proving the following result.
- **Theorem.** A formally unmixed local ring is Cohen-Macaulay if and only if $e_1(Q) = 0$ for some parameter ideal Q.

Bounds for the Chern number of the $\{(I^n)\}$ filtration

- Theorem. [Huckaba-Marley, 1997] Let (R, \mathfrak{m}) be a *d*-dimensional CM local ring. Let *I* be an \mathfrak{m} -primary ideal and \mathcal{F} be an *I*-good filtration. Let *J* be a minimal reduction of \mathcal{F} .
 - (1) $e_1(\mathcal{F}) \geq \sum_{n>1} \lambda(I_n/(J \cap I_n))$, with equality iff $G(\mathcal{F})$ is CM.
 - (2) $e_1(\mathcal{F}) \leq \sum_{n>1}^{-} \lambda(I_n/JI_{n-1})$ with equality iff depth $G(\mathcal{F}) \geq d-1$.
- **Corollary.** $e_1(\mathcal{F}) = 0 \iff I_n = J^n$ for all n.
- **Orollary.** Let *R* be a Cohen-Macaulay analytically unramified local ring and *I* be an m-primary ideal. If $\overline{e}_1(I) = 0$ then *R* is a regular local ring, *I* is generated by a regular sequence and it is a normal ideal.
- The positivity conjecture of Vasconcelos. For any m-primary ideal *I*, of an analytically unramified local ring, ē₁(*I*) ≥ 0.
- **Theorem.** (Mandal-Singh-Verma, 2011) The positivity conjecture is true for (1) 2-dimensional complete local domains (2) for analytically unramified local ring *R* so that there is a Cohen-Macaulay local ring *S* containing *R* and *S*/*R* has finite length and (3) the integral closure of *R* is a finite Cohen-Macaulay *R*-module.
- Theorem. (Mandal-Hong-Goto, 2011) The positivity conjecture is true for formally unmixed analytically unramified local rings.

F-rational local rings

- Definition. A Noetherian ring R of prime characteristic is called weakly F-regular if all ideals of R are tightly closed. If R_p is weakly F-regular for all prime ideals p of R then R is called F-regular.
- **Examples.** Regular local rings, polynomial rings over a field, direct summands of *F*-regular rings, are all *F*-regular.
- Definition. An ideal *I* of a Noetherian ring is called a parameter ideal if *I* can be generated by ht *I* elements. A Noetherian ring *R* is called *F*-rational if all parameter ideals are tightly closed. If *R* is a homomorphic image of a CM ring and it is *F*-rational then it is normal and CM and its m-adic completion and localizations are *F*-rational.

Examples. Let k be a field of prime characteristic p, S = k[X, Y, Z].
 (1) S/(X² + Y² + Z²) is F-rational if p ≥ 3.
 (2) S/(X² - Y³ - Z⁷) is not F-rational.
 (3) S/(X² - Y³ - Z⁵) is F-rational iff p ≥ 11.
 (4) If p ≥ 11, 1/a + 1/b + 1/c > 1 then S/(X^a + Y^b + Z^c) is F-rational.

Vanishing of $e_1^*(Q)$ and F-rational local rings

- Theorem. (K. Goel, V. Mukundan and J. K. Verma, 2020) Let R be a Cohen-Macaulay analytically unramified local ring of prime characteristic and I be generated by a system of parameters of R. Then e₁^{*}(I) = 0 ⇔ R is an F-rational local ring.
- Question. (C. Huneke) Let (R, m) be a formally unmixed local Noetherian ring and Q be an ideal generated by a system of parameters. Is it true that e^{*}₁(Q) = 0 ⇐⇒ R is F-rational?
- **3** Answer. (S. Dubey, P. H. Quy and J. K. Verma, 2021) We construct a complete local domain of dimension 2 that is not F-rational but there is an m-primary parameter ideal Q and $e_1^*(Q) = 0$.
- **Example.** Let k be a field, char $k = p \ge 3$ and $R = k[[x^4, x^3y, xy^3, y^4]]$. Then $\overline{R} = S = k[[x^4, x^3y, x^2y^2, xy^3, y^4]]$ is Cohen-Macaulay and F-regular.
- We have C := S/R ≅ k, so that ℓ(C/JC) = 1 for any m-primary ideal J of R. Let Q be any m-primary parameter ideal of R.

A characterization of F-rational local rings

Onsider the short exact sequence,

$$0 \rightarrow R/(Q^{n+1})^* \rightarrow S/(Q^{n+1}S)^* \rightarrow C \rightarrow 0.$$

Then $\ell(R/(Q^{n+1})^*) = \ell(S/(Q^{n+1})^*S) - 1.$

- Since S is F-regular, $\ell(R/(Q^{n+1})^*) = e_0(Q)\binom{n+2}{2} 1$, for all $n \ge 1$. Since $S/\mathfrak{n} \cong R/\mathfrak{m}, e_0(Q) = e_0(QS)$. Hence $e_1^*(Q) = 0$. But R is not even CM.
- **Theorem.(S. Dubey, P. H. Quy and J. K. Verma, 2021)** Let (R, m) be an excellent reduced equidimensional local ring of prime characteristic p and dimension d ≥ 2. Let x₁, x₂,..., x_d be test elements and Q = (x₁, x₂,..., x_d) be m-primary. Then R is F-rational. ⇔ e₁^{*}(Q) = 0 and depth R ≥ 2.
- The following recent result due to Linquan Ma and Pham Hung Quy plays a crucial role for proving the above theorem.
- **Theorem.** Let (R, \mathfrak{m}) be an excellent equidimensional local ring such that the test ideal $\tau_{par}(R)$ for all parameter ideals is \mathfrak{m} -primary. Let Q be an ideal generated by a system of parameters contained in $\tau_{par}(R)$. Then we have

$$\ell(Q^*/Q) = \sum_{i=0}^{d-1} \binom{d}{i} \ell(H^i_{\mathfrak{m}}(R)) + \ell(0^*_{H^d_{\mathfrak{m}}(R)}).$$

Sketch of a proof of the main theorem

If Q is an ideal generated by a system of parameters of R consisting of test elements then it is a standard system of parameters of R. This means

$$\ell(R/Q) - e(Q) = \sum_{i=0}^{d-1} \binom{d-1}{i} \ell(H_{\mathfrak{m}}^{i}(R)).$$

(a) If Q is generated by a standard system of parameters, then for all $n \ge 0$,

$$\ell(R/Q^n) = \sum_{i=0}^d (-1)^i e_i(Q) \binom{n+d-1-i}{d-i}, \text{ where }$$

$$e_i(Q) = (-1)^i \sum_{j=0}^{d-i} {d-i-1 \choose j-1} \ell(H^j_{\mathfrak{m}}(R)) ext{ for all } i=1,2,\ldots,d.$$

$$e_1^*(Q) = \sum_{i=1}^{d-1} {d-1 \choose i-1} \ell(H_{\mathfrak{m}}^i(R)) + \ell(0_{H_{\mathfrak{m}}^d(R)}^*).$$

Now we use a characterization of F-rational rings due to Karen Smith: A Cohen-Macaulay excellent local ring is F-rational if and only if 0^{*}_{Lld (D)} = 0. J. K. Verma (IIT Bombay)