On the Chern number of good filtrations of ideals

Jugal Verma

Indian Institute of Technology Bombay

Virtual Symposium in honour of Dilip Patil

29 July 2021

Outline

- **1** *I*-good filtrations and their examples.
- **2** Basic notation for Hilbert polynomials of *I*-good filtrations.
- **3** The normal and tight Hilbert polynomials of ideals.
- The Rees ring and associated graded ring of an *I-good filtration*.
- **•** Conjectures of Vasconcelos for the Chern number of a parameter ideal and the normal Chern number of an ideal.
- **Huckaba-Marley Theorem for** $e_1(\mathcal{F})$ **for an** *I***-good filtration** \mathcal{F} **in a** Cohen-Macaulay local ring.
- **1** On a question of C. Huneke about F-rational rings.

Examples of I-good filtrations

- **Q** Definition. Suppose *I* is an ideal of a Noetherian ring R.
- **4** A sequence of ideals $\mathcal{F} = \{I_n\}_{n \in \mathbb{Z}}$ is called an *I*-filtration if for all $m, n \in \mathbb{Z}$, (i) $I_{n+1} \subseteq I_n$, (ii) $I_m I_n \subseteq I_{m+n}$, (iii) $I^n \subseteq I_n$.
- 3 An *I*-filtration is called *I*-good if $\exists k$ so that $I_{n+k} \subseteq I^n \; \forall n \in \mathbb{Z}$.
- **D** Examples. The *I*-adic filtration $\{I^n\}$ is *I*-good.
- **2** We say that $x \in R$ is **integral** over *l* if

$$
x^{n} + a_{1}x^{n-1} + \cdots + a_{n} = 0
$$
 for some $a_{i} \in I^{i}$ for all *i*.

3 The integral closure of I is $\overline{I} = \{x \in R \mid x \text{ is integral over } I\}.$

4 Theorem. [D. Rees, 1961] Let (R, m) be a Noetherian local ring. Then R is analytically unramified \iff the filtration $\{\overline{I^n}\}$ is *I*-good for all ideals *I*,

 \iff there exists and m-primary ideal *I* so that $\{\overline{I^n}\}$ is *I*-good.

Hilbert function and polynomial of an I-good filtration

- **Definition.** Let R be a Noetherian ring of prime characteristic p and $q = p^e$. Let min(R) = { $\mathfrak{p}_1, \mathfrak{p}_2, \ldots, \mathfrak{p}_r$ } be the set of minimal primes of R and $R^{\circ} = R \setminus \cup_{i=1}^{r} \mathfrak{p}_{i}$. Let $I = (a_{1}, a_{2}, \ldots, a_{n})$.
- **2** The q^{th} Frobenius power of *I* is the ideal $I^{[q]} = (a_1^q, a_2^q, \ldots, a_n^q)$.
- **•** The tight closure /* of an ideal *I* is the ideal

 $I^* = \{x \in R \mid \text{ there exists } c \in R^{\circ} \text{ so that } cx^q \in I^{[q]} \text{ for all large } q\}.$

- **Definition.** An element $c \in R^{\circ}$ is called a **test element** if whenever $x \in I^*$ then $cx^q \in I^{[q]}$ for all q and all ideal I of R .
- Since $I\subseteq I^*\subseteq \overline{I},$ if R is analytically unramified, $\{(I^n)^*\}$ is $I\text{-good}.$
- **O** Definition. Let (R, m) be a Noetherian local ring of dimension d. Let I be an m-primary ideal of R . The **Hilbert function** of an I -good filtration $\mathcal{F} = \{I_n\}$ is defined as: $H_{\mathcal{F}}(n) = \lambda (R/I_n)$.
- **0 Theorem.(Rees)** There exists a polynomial $P_f(x) \in \mathbb{Q}[x]$ called the **Hilbert polynomial** of *F* so that $H_f(n) = P_f(n)$ for all large *n*.

The normal and the tight Hilbert polynomial of an ideal

1 Definitions. The Hilbert polynomial of \mathcal{F} is written as

$$
P_{\mathcal{F}}(x) = e_0(\mathcal{F})\binom{x+d-1}{d} - e_1(\mathcal{F})\binom{x+d-2}{d-1} + \cdots + (-1)^d e_d(\mathcal{F}).
$$

\n- **②**
$$
e_i(\mathcal{F})
$$
 are called the **Hilbert coefficients** of $\mathcal{F} = \{I_n\}$.
\n- **③** If $\mathcal{F} = \{I^n\}$ then we write $P_{\mathcal{F}}(x) = P_I(x), e_i(\mathcal{F}) = e_i(I).$
\n- **④** $P_I(x)$ is called the **Hilbert polynomial** of *I*.
\n- **③** If $\mathcal{F} = \{\overline{I^n}\}$ then we write $P_{\mathcal{F}}(x) = \overline{P}_I(x), e_i(\mathcal{F}) = \overline{e}_i(I).$
\n- **④** $\overline{P}_I(x)$ is called the **normal Hilbert polynomial** of *I*.
\n- **④** If $\mathcal{F} = \{(I^n)^*\}$ then we write $P_{\mathcal{F}}(x) = P_I^*(x), e_i(\mathcal{F}) = e_i^*(I).$
\n

- **•** $P_I^*(x)$ is called the **tight Hilbert polynomial** of *I*.
- **9 Definition.** The coefficient $e_1(f)$ is called the **Chern number** of f .

Graded modules and algebras for I-filtrations

1 Definition. Let $\mathcal{F} = \{I_n \mid n \in \mathbb{Z}\}$ be an *I*-filtration. By convention $I_n = R$ for all $n \leq 0$. Let t be indeterminate.

Rees algebra of $f = \mathcal{R}(f) = \bigoplus_{n=0}^{\infty} I_n t^n$ mm Extended Rees algebra of \mathcal{F} = $\mathcal{R}'(\mathcal{F})$ = $\bigoplus_{n\in\mathbb{Z}}I_nt^n$ mm **Associated graded ring** of $f = G(f) = \tilde{\Theta}_{n=0}^{\infty} I_n/I_{n+1}$ **2** If $\mathcal{F} = \{I^n\}$ then these algebras are denoted by $\mathcal{R}(I), \mathcal{R}'(I),$ and $G(I).$

3 Theorem. Let (R, \mathfrak{m}) be a d-dimensional local ring and $\mathfrak{F} = \{I_n\}$ be an *I*-good filtration for an m-primary ideal *I*. Then $G(f)$ is a finitely generated G(I)-module. Moreover,

$$
\dim \mathcal{R}'(\mathcal{F}) = d + 1, \dim G(\mathcal{F}) = d \text{ and } \dim \mathcal{R}(\mathcal{F}) = d + 1.
$$

4 An ideal $J \subset I_1$ is called a **reduction** of *F* if $JI_n = I_{n+1}$ for all large *n*.

Results about $e_1(I)$

1 Theorem. (Northcott. 1960) Let R be a Cohen-Macaulay local ring and I be an m-primary ideal. Then $e_1(I) \geq 0$ with equality $\iff I$ is generated by a regular sequence.

Conjectures of W. Vasconcelos, 2008

- **2 The negativity conjecture.** For any ideal Q generated by a system of parameters, $e_1(Q) < 0$ if and only if R is not Cohen-Macaulay.
- **3 Theorem.** (Mandal-Singh-Verma, 2010) Let R be a d-dimensional Noetherian local ring. Let J be an ideal generated by a system of parameters. Then $e_1(J) \leq 0$.
- ⁴ Partial solutions for the negativity conjecture were given by L. Ghezzi, J. Hong and W. Vasconcelos in 2009 and by M. Mandal, B. Singh and J. Verma in 2011.
- **Definition.** A Noetherian local ring is called **formally unmixed** if for any associated prime p of the m-adic completion \hat{R} dim $\hat{R}/p = \dim R$.
- ⁶ L Ghezzi, S. Goto, J. Hong, T. T. Phuong, W. V. Vaconcelos settled the negativity conjecture in 2010 by proving the following result.
- **1** Theorem. A formally unmixed local ring is Cohen-Macaulay if and only if $e_1(Q) = 0$ for some parameter ideal Q.

Bounds for the Chern number of the $\{(I^n)\}$ filtration

- **1 Theorem. [Huckaba-Marley, 1997]** Let (R, \mathfrak{m}) be a d-dimensional CM local ring. Let I be an m-primary ideal and *F* be an I-good filtration. Let J be a minimal reduction of *F* .
	- (1) $e_1(f) \geq \sum_{n\geq 1} \lambda(f_n/(J \cap I_n))$, with equality iff $G(f)$ is CM.
	- $P(2)$ e₁(\mathcal{F}) ≤ $\sum_{n\geq 1}$ λ (I_n / JI_{n-1}) with equality iff depth $G(\mathcal{F})$ ≥ *d* − 1.
- **2 Corollary.** $e_1(f) = 0 \iff I_n = J^n$ for all *n*.
- **3 Corollary.** Let R be a Cohen-Macaulay analytically unramified local ring and I be an m-primary ideal. If $\overline{e}_1(I) = 0$ then R is a regular local ring, I is generated by a regular sequence and it is a normal ideal.
- **4 The positivity conjecture of Vasconcelos.** For any m-primary ideal I, of an analytically unramified local ring, $\overline{e}_1(I) > 0$.
- **Theorem. (Mandal-Singh-Verma, 2011)** The positivity conjecture is true for (1) 2-dimensional complete local domains (2) for analytically unramified local ring R so that there is a Cohen-Macaulay local ring S containing R and S/R has finite length and (3) the integral closure of R is a finite Cohen-Macaulay R-module.
- **Theorem. (Mandal-Hong-Goto, 2011)** The positivity conjecture is true for formally unmixed analytically unramified local rings.

F-rational local rings

- **Definition.** A Noetherian ring R of prime characteristic is called weakly F-regular if all ideals of R are tightly closed. If R_p is weakly F-regular for all prime ideals $\mathfrak p$ of R then R is called F-regular.
- **2 Examples.** Regular local rings, polynomial rings over a field, direct summands of F-regular rings, are all F-regular.
- **3 Definition.** An ideal I of a Noetherian ring is called a parameter ideal if I can be generated by ht I elements. A Noetherian ring R is called F -rational if all parameter ideals are tightly closed. If R is a homomorphic image of a CM ring and it is F-rational then it is normal and CM and its m-adic completion and localizations are F-rational.

4 Examples. Let k be a field of prime characteristic $p, S = k[X, Y, Z]$. (1) $S/(X^2+Y^2+Z^2)$ is *F*-rational if $p\geq 3$. (2) $S/(X^2 - Y^3 - Z^7)$ is not *F*-rational. (3) $S/(X^2 - Y^3 - Z^5)$ is *F*-rational iff $p \ge 11$. (4) If $p \ge 11, 1/a + 1/b + 1/c > 1$ then $S/(X^a + Y^b + Z^c)$ is *F*-rational.

Vanishing of e_1^* $\chi_1^*(Q)$ and F-rational local rings

- **Q Theorem. (K. Goel, V. Mukundan and J. K. Verma, 2020)** Let R be a Cohen-Macaulay analytically unramified local ring of prime characteristic and *I* be generated by a system of parameters of R. Then $e_1^*(I) = 0 \iff R$ is an F-rational local ring.
- **2 Question. (C. Huneke)** Let (R, \mathfrak{m}) be a formally unmixed local Noetherian ring and Q be an ideal generated by a system of parameters. Is it true that $e_1^*(Q) = 0 \iff R$ is F-rational?
- **3 Answer. (S. Dubey, P. H. Quy and J. K. Verma, 2021)** We construct a complete local domain of dimension 2 that is not F-rational but there is an $\mathfrak m$ -primary parameter ideal Q and $e_1^\ast(Q)=0.$
- **Example.** Let k be a field, char $k = p \geq 3$ and $R = k[[x^4, x^3y, xy^3, y^4]].$ Then $\overline{R} = S = k[[x^4, x^3y, x^2y^2, xy^3, y^4]]$ is Cohen-Macaulay and F-regular.
- **•** We have $C := S/R \cong k$, so that $\ell(C/JC) = 1$ for any m-primary ideal J of R. Let Q be any m-primary parameter ideal of R .

A characterization of F-rational local rings

1 Consider the short exact sequence,

$$
0 \to R/(Q^{n+1})^* \to S/(Q^{n+1}S)^* \to C \to 0.
$$

Then $\ell(R/(Q^{n+1})^*) = \ell(S/(Q^{n+1})^*S) - 1.$

- **2** Since S is F-regular, $\ell(R/(Q^{n+1})^*) = e_0(Q)\binom{n+2}{2} 1$, for all $n \ge 1$. Since $S/n \cong R/\mathfrak{m}$, $e_0(Q) = e_0(QS)$. Hence $e_1^*(Q) = 0$. But R is not even CM.
- **3 Theorem. (S. Dubey, P. H. Quy and J. K. Verma, 2021)** Let (R, m) be an excellent reduced equidimensional local ring of prime characteristic p and dimension $d \ge 2$. Let $x_1, x_2, ..., x_d$ be test elements and $Q = (x_1, x_2, ..., x_d)$ be m-primary. Then R is F-rational. $\iff e_1^*(Q) = 0$ and depth $R \geq 2$.
- **4** The following recent result due to Linguan Ma and Pham Hung Quy plays a crucial role for proving the above theorem.
- **Theorem.** Let (R, \mathfrak{m}) be an excellent equidimensional local ring such that the test ideal $\tau_{par}(R)$ for all parameter ideals is m-primary. Let Q be an ideal generated by a system of parameters contained in $\tau_{par}(R)$. Then we have

$$
\ell(Q^*/Q) = \sum_{i=0}^{d-1} \binom{d}{i} \ell(H^i_{\mathfrak{m}}(R)) + \ell(0^*_{H^d_{\mathfrak{m}}(R)}).
$$

Sketch of a proof of the main theorem

 \bullet If Q is an ideal generated by a system of parameters of R consisting of test elements then it is a standard system of parameters of R . This means

$$
\ell(R/Q) - e(Q) = \sum_{i=0}^{d-1} {d-1 \choose i} \ell(H_m^i(R)).
$$

2 If Q is generated by a standard system of parameters, then for all $n > 0$,

$$
\ell(R/Q^n) = \sum_{i=0}^d (-1)^i e_i(Q) \binom{n+d-1-i}{d-i}, \text{ where}
$$

$$
e_i(Q) = (-1)^i \sum_{j=0}^{d-i} {d-i-1 \choose j-1} \ell(H_m^j(R))
$$
 for all $i = 1, 2, ..., d$.

$$
e_1^*(Q) = \sum_{i=1}^{d-1} {d-1 \choose i-1} \ell(H_{\mathfrak{m}}^i(R)) + \ell(0_{H_{\mathfrak{m}}^d(R)}^*).
$$

³ Now we use a characterization of F-rational rings due to Karen Smith: A Cohen-Macaulay excellent local ring is F-rational if and only if $0^*_{L(dCD)} = 0$.
J. K. Verma (IIT Bombav) J. K. Verma (IIT Bombay) [Chern number](#page-0-0) July 29, 2021 12 / 12