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Examples of I -good filtrations

1 Definition. Suppose I is an ideal of a Noetherian ring R.

2 A sequence of ideals F = {In}n∈Z is called an I -filtration if for all m, n ∈ Z,
(i) In+1 ⊆ In, (ii) ImIn ⊆ Im+n, (iii) I n ⊆ In.

3 An I -filtration is called I -good if ∃ k so that In+k ⊆ I n ∀n ∈ Z.
1 Examples. The I -adic filtration {I n} is I -good.

2 We say that x ∈ R is integral over I if

xn + a1x
n−1 + · · ·+ an = 0 for some ai ∈ I i for all i .

3 The integral closure of I is I = {x ∈ R | x is integral over I}.
4 Theorem. [D. Rees, 1961] Let (R,m) be a Noetherian local ring.

Then R is analytically unramified
⇐⇒ the filtration {I n} is I -good for all ideals I ,
⇐⇒ there exists and m-primary ideal I so that {I n} is I -good.
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Hilbert function and polynomial of an I -good filtration

1 Definition. Let R be a Noetherian ring of prime characteristic p and q = pe .
Let min(R) = {p1, p2, . . . , pr} be the set of minimal primes of R and
R◦ = R \ ∪ri=1pi . Let I = (a1, a2, . . . , an).

2 The qth Frobenius power of I is the ideal I [q] = (aq1 , a
q
2 , . . . , a

q
n).

3 The tight closure I ∗ of an ideal I is the ideal

I ∗ = {x ∈ R | there exists c ∈ R◦ so that cxq ∈ I [q] for all large q}.

4 Definition. An element c ∈ R◦ is called a test element if whenever x ∈ I ∗

then cxq ∈ I [q] for all q and all ideal I of R.

5 Since I ⊆ I ∗ ⊆ I , if R is analytically unramified, {(I n)∗} is I -good.

6 Definition. Let (R,m) be a Noetherian local ring of dimension d . Let I be
an m-primary ideal of R. The Hilbert function of an I -good filtration
F = {In} is defined as: HF (n) = λ(R/In).

7 Theorem.(Rees) There exists a polynomial PF (x) ∈ Q[x ] called the Hilbert
polynomial of F so that HF (n) = PF (n) for all large n.
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The normal and the tight Hilbert polynomial of an ideal

1 Definitions. The Hilbert polynomial of F is written as

PF (x) = e0(F )

(
x + d − 1

d

)
− e1(F )

(
x + d − 2

d − 1

)
+ · · ·+ (−1)ded(F ).

2 ei (F ) are called the Hilbert coefficients of F = {In}.
3 If F = {I n} then we write PF (x) = PI (x), ei (F ) = ei (I ).

4 PI (x) is called the Hilbert polynomial of I .

5 If F = {I n} then we write PF (x) = P I (x), ei (F ) = e i (I ).

6 P I (x) is called the normal Hilbert polynomial of I .

7 If F = {(I n)∗} then we write PF (x) = P∗I (x), ei (F ) = e∗i (I ).

8 P∗I (x) is called the tight Hilbert polynomial of I .

9 Definition. The coefficient e1(F ) is called the Chern number of F .
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Graded modules and algebras for I -filtrations

1 Definition. Let F = {In | n ∈ Z} be an I -filtration. By convention In = R for
all n ≤ 0. Let t be indeterminate.

Rees algebra of F = R(F ) =
⊕∞

n=0 Int
n

mm Extended Rees algebra of F = R′(F ) =
⊕

n∈Z Int
n

mm Associated graded ring of F = G (F ) =
⊕∞

n=0 In/In+1

2 If F = {I n} then these algebras are denoted by R(I ),R′(I ), and G (I ).

3 Theorem. Let (R,m) be a d-dimensional local ring and F = {In} be an
I -good filtration for an m-primary ideal I . Then G (F ) is a finitely generated
G (I )-module. Moreover,

dimR′(F ) = d + 1, dimG (F ) = d and dimR(F ) = d + 1.

4 An ideal J ⊂ I1 is called a reduction of F if JIn = In+1 for all large n.
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Results about e1(I )

1 Theorem. (Northcott. 1960) Let R be a Cohen-Macaulay local ring and
I be an m-primary ideal. Then e1(I ) ≥ 0 with equality ⇐⇒ I is generated
by a regular sequence.

Conjectures of W. Vasconcelos, 2008
2 The negativity conjecture. For any ideal Q generated by a system of

parameters, e1(Q) < 0 if and only if R is not Cohen-Macaulay.
3 Theorem. (Mandal-Singh-Verma, 2010) Let R be a d-dimensional

Noetherian local ring. Let J be an ideal generated by a system of parameters.
Then e1(J) ≤ 0.

4 Partial solutions for the negativity conjecture were given by L. Ghezzi, J.
Hong and W. Vasconcelos in 2009 and by M. Mandal, B. Singh and J. Verma
in 2011.

5 Definition. A Noetherian local ring is called formally unmixed if for any
associated prime p of the m-adic completion R̂ dim R̂/p = dimR.

6 L Ghezzi, S. Goto, J. Hong, T. T. Phuong, W. V. Vaconcelos settled the
negativity conjecture in 2010 by proving the following result.

7 Theorem. A formally unmixed local ring is Cohen-Macaulay if and only if
e1(Q) = 0 for some parameter ideal Q.
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Bounds for the Chern number of the {(I n)} filtration

1 Theorem. [Huckaba-Marley, 1997] Let (R,m) be a d-dimensional CM
local ring. Let I be an m-primary ideal and F be an I -good filtration. Let J
be a minimal reduction of F .
(1) e1(F ) ≥

∑
n≥1 λ(In/(J ∩ In), with equality iff G (F ) is CM.

(2) e1(F ) ≤
∑

n≥1 λ(In/JIn−1) with equality iff depthG (F ) ≥ d − 1.
2 Corollary. e1(F ) = 0 ⇐⇒ In = Jn for all n.
3 Corollary. Let R be a Cohen-Macaulay analytically unramified local ring and

I be an m-primary ideal. If e1(I ) = 0 then R is a regular local ring, I is
generated by a regular sequence and it is a normal ideal.

4 The positivity conjecture of Vasconcelos. For any m-primary ideal I , of
an analytically unramified local ring, e1(I ) ≥ 0.

5 Theorem. (Mandal-Singh-Verma, 2011) The positivity conjecture is true
for (1) 2-dimensional complete local domains (2) for analytically unramified
local ring R so that there is a Cohen-Macaulay local ring S containing R and
S/R has finite length and (3) the integral closure of R is a finite
Cohen-Macaulay R-module.

6 Theorem. (Mandal-Hong-Goto, 2011) The positivity conjecture is true for
formally unmixed analytically unramified local rings.
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F-rational local rings

1 Definition. A Noetherian ring R of prime characteristic is called weakly
F -regular if all ideals of R are tightly closed. If Rp is weakly F -regular for all
prime ideals p of R then R is called F -regular.

2 Examples. Regular local rings, polynomial rings over a field, direct
summands of F -regular rings, are all F -regular.

3 Definition. An ideal I of a Noetherian ring is called a parameter ideal if I
can be generated by ht I elements. A Noetherian ring R is called F -rational
if all parameter ideals are tightly closed. If R is a homomorphic image of a
CM ring and it is F -rational then it is normal and CM and its m-adic
completion and localizations are F -rational.

4 Examples. Let k be a field of prime characteristic p,S = k[X ,Y ,Z ].
(1) S/(X 2 + Y 2 + Z 2) is F -rational if p ≥ 3.
(2) S/(X 2 − Y 3 − Z 7) is not F -rational.
(3) S/(X 2 − Y 3 − Z 5) is F -rational iff p ≥ 11.
(4) If p ≥ 11, 1/a + 1/b + 1/c > 1 then S/(X a + Y b + Z c) is F -rational.
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Vanishing of e∗1 (Q) and F-rational local rings

1 Theorem. (K. Goel, V. Mukundan and J. K. Verma, 2020) Let R be a
Cohen-Macaulay analytically unramified local ring of prime characteristic and
I be generated by a system of parameters of R. Then e∗1 (I ) = 0 ⇐⇒ R is an
F-rational local ring.

2 Question. (C. Huneke) Let (R,m) be a formally unmixed local Noetherian
ring and Q be an ideal generated by a system of parameters. Is it true that
e∗1 (Q) = 0 ⇐⇒ R is F-rational?

3 Answer. (S. Dubey, P. H. Quy and J. K. Verma, 2021) We construct a
complete local domain of dimension 2 that is not F-rational but there is an
m-primary parameter ideal Q and e∗1 (Q) = 0.

4 Example. Let k be a field, char k = p ≥ 3 and R = k[[x4, x3y , xy3, y4]].
Then R = S = k[[x4, x3y , x2y2, xy3, y4]] is Cohen-Macaulay and F -regular.

5 We have C := S/R ∼= k , so that `(C/JC ) = 1 for any m-primary ideal J of
R. Let Q be any m-primary parameter ideal of R.
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A characterization of F-rational local rings

1 Consider the short exact sequence,

0→ R/(Qn+1)∗ → S/(Qn+1S)∗ → C → 0.

Then `(R/(Qn+1)∗) = `(S/(Qn+1)∗S)− 1.
2 Since S is F-regular, `(R/(Qn+1)∗) = e0(Q)

(
n+2
2

)
− 1, for all n ≥ 1. Since

S/n ∼= R/m, e0(Q) = e0(QS). Hence e∗1 (Q) = 0. But R is not even CM.
3 Theorem.(S. Dubey, P. H. Quy and J. K. Verma, 2021) Let (R,m) be

an excellent reduced equidimensional local ring of prime characteristic p and
dimension d ≥ 2. Let x1, x2, . . . , xd be test elements and Q = (x1, x2, . . . , xd)
be m-primary. Then R is F-rational. ⇐⇒ e∗1 (Q) = 0 and depthR ≥ 2.

4 The following recent result due to Linquan Ma and Pham Hung Quy plays a
crucial role for proving the above theorem.

5 Theorem. Let (R,m) be an excellent equidimensional local ring such that
the test ideal τpar (R) for all parameter ideals is m-primary. Let Q be an ideal
generated by a system of parameters contained in τpar (R). Then we have

`(Q∗/Q) =
d−1∑
i=0

(
d

i

)
`(H i

m(R)) + `(0∗Hd
m(R)).
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Sketch of a proof of the main theorem

1 If Q is an ideal generated by a system of parameters of R consisting of test
elements then it is a standard system of parameters of R. This means

`(R/Q)− e(Q) =
d−1∑
i=0

(
d − 1

i

)
`(H i

m(R)).

2 If Q is generated by a standard system of parameters, then for all n ≥ 0,

`(R/Qn) =
d∑

i=0

(−1)iei (Q)

(
n + d − 1− i

d − i

)
, where

ei (Q) = (−1)i
d−i∑
j=0

(
d − i − 1

j − 1

)
`(H j

m(R)) for all i = 1, 2, . . . , d .

e∗1 (Q) =
d−1∑
i=1

(
d − 1

i − 1

)
`(H i

m(R)) + `(0∗Hd
m(R)).

3 Now we use a characterization of F-rational rings due to Karen Smith: A
Cohen-Macaulay excellent local ring is F-rational if and only if 0∗Hd

m(R) = 0.
J. K. Verma (IIT Bombay) Chern number July 29, 2021 12 / 12


