provingground.induction.IndexedConstructorShape
IndexedFuncConsShape
Companion object IndexedFuncConsShape
case class IndexedFuncConsShape[HShape <: HList, H <: Term with Subs[H], F <: Term with Subs[F], FI <: Term with Subs[FI], HC <: Term with Subs[HC], Index <: HList](tail: IterFuncShape[H, FI], head: IndexedConstructorShape[HShape, H, F, HC, Index], ind: Index)(implicit evidence$11: TermList[Index]) extends IndexedConstructorShape[::[IndexedFuncConsShape.type, HShape], H, F, Func[FI, HC], Index] with Product with Serializable
- Annotations
- @deprecated
- Deprecated
(Since version don't use) wrong
- Alphabetic
- By Inheritance
- IndexedFuncConsShape
- Serializable
- Product
- Equals
- IndexedConstructorShape
- AnyRef
- Any
- by any2stringadd
- by StringFormat
- by Ensuring
- by ArrowAssoc
- Hide All
- Show All
- Public
- Protected
Instance Constructors
- new IndexedFuncConsShape(tail: IterFuncShape[H, FI], head: IndexedConstructorShape[HShape, H, F, HC, Index], ind: Index)(implicit arg0: TermList[Index])
Value Members
- def -->>:[F <: Term with Subs[F]](that: IndexedIterFuncShape[H, F, F, Index], ind: Index): IndexedIndexedFuncConsShape[::[IndexedFuncConsShape.type, HShape], H, F, Func[FI, HC], F, Index]
returns shape
that -> this' where
thatis of the form
W(z),
A -> W(z)etc; invoking this is an error if we
thatis independent of
Wreturns shape
that -> this' where
thatis of the form
W(z),
A -> W(z)etc; invoking this is an error if we
thatis independent of
W- Definition Classes
- IndexedConstructorShape
- def ->>:[T <: Term with Subs[T]](tail: Typ[T]): IndexedCnstFuncConsShape[::[IndexedFuncConsShape.type, HShape], T, H, F, Func[FI, HC], Index]
returns shape
tail ->: this
where tail must be independent of the inductive typeW
being defined.returns shape
tail ->: this
where tail must be independent of the inductive typeW
being defined.- Definition Classes
- IndexedConstructorShape
- def :::(name: AnySym): IndexedConstructor[::[IndexedFuncConsShape.type, HShape], H, F, Func[FI, HC], Index]
returns a variable to act as an introduction rule.
returns a variable to act as an introduction rule.
- Definition Classes
- IndexedConstructorShape
- def apply(W: F): FuncTyp[FI, HC]
returns HoTT type corresponding to the pattern given the (inductive) type family W (to be the head).
returns HoTT type corresponding to the pattern given the (inductive) type family W (to be the head).
- Definition Classes
- IndexedFuncConsShape → IndexedConstructorShape
- val family: TypFamilyPtn[H, F, Index]
- Definition Classes
- IndexedFuncConsShape → IndexedConstructorShape
- val head: IndexedConstructorShape[HShape, H, F, HC, Index]
- val ind: Index
- def mapped[C <: Term with Subs[C], IF <: Term with Subs[IF], IDF <: Term with Subs[IDF], IDFT <: Term with Subs[IDFT]](implicit fmlyMapper: TypFamilyMapper[H, F, C, Index, IF, IDF, IDFT]): IndexedConstructorPatternMap[C, Func[FI, HC], H, RecDataType, InducDataType, F, Index, IF, IDF, IDFT] forSome {type RecDataType <: Term with Subs[RecDataType], type InducDataType <: Term with Subs[InducDataType]}
lift to IndexedConstructorPatternMap using the result of the mapper method.
lift to IndexedConstructorPatternMap using the result of the mapper method.
- Definition Classes
- IndexedConstructorShape
- def mapper[C <: Term with Subs[C], IF <: Term with Subs[IF], IDF <: Term with Subs[IDF], IDFT <: Term with Subs[IDFT]](implicit fmlyMapper: TypFamilyMapper[H, F, C, Index, IF, IDF, IDFT]): IndexedConstructorPatternMapper[::[IndexedFuncConsShape.type, HShape], C, Func[FI, HC], H, RecDataType, InducDataType, F, Index, IF, IDF, IDFT] forSome {type RecDataType <: Term with Subs[RecDataType], type InducDataType <: Term with Subs[InducDataType]}
helper to give ConstructorPatternMap when scala type of codomain is specified.
helper to give ConstructorPatternMap when scala type of codomain is specified.
- Definition Classes
- IndexedFuncConsShape → IndexedConstructorShape
- def productElementNames: Iterator[String]
- Definition Classes
- Product
- def subs(x: Term, y: Term): IndexedFuncConsShape[HShape, H, F, FI, HC, Index]
- Definition Classes
- IndexedFuncConsShape → IndexedConstructorShape
- def symbcons(name: AnySym, tp: F): Func[FI, HC]
returns term giving introduction rule given inductive type and name
returns term giving introduction rule given inductive type and name
- Definition Classes
- IndexedConstructorShape
- val tail: IterFuncShape[H, FI]
- def ~>>:[T <: Term with Subs[T]](tailVar: T): IndexedCnstDepFuncConsShape[::[IndexedFuncConsShape.type, HShape], T, H, F, Func[FI, HC], Index]
returns dependent shape
tail ~>: this
where tail must be independent of the inductive typeW
being defined.returns dependent shape
tail ~>: this
where tail must be independent of the inductive typeW
being defined.- Definition Classes
- IndexedConstructorShape