Packages

object AdjDiffbleFunction

Linear Supertypes
AnyRef, Any
Ordering
  1. Alphabetic
  2. By Inheritance
Inherited
  1. AdjDiffbleFunction
  2. AnyRef
  3. Any
  1. Hide All
  2. Show All
Visibility
  1. Public
  2. Protected

Type Members

  1. case class BigSum[A, B](fns: (A) => Iterable[AdjDiffbleFunction[A, B]])(implicit evidence$13: LinearStructure[A], evidence$14: LinearStructure[B]) extends AdjDiffbleFunction[A, B] with Product with Serializable

    Big sum, with terms (via support) in general depending on the argument.

  2. case class Composition[A, B, C](f: AdjDiffbleFunction[A, B], g: AdjDiffbleFunction[B, C]) extends AdjDiffbleFunction[A, C] with Product with Serializable
  3. case class Diagonal[A]()(implicit evidence$15: LinearStructure[A]) extends AdjDiffbleFunction[A, (A, A)] with Product with Serializable
  4. case class DotProd[A, B](sc: Double, vect: AdjDiffbleFunction[A, B])(implicit evidence$16: LinearStructure[A], evidence$17: LinearStructure[B]) extends AdjDiffbleFunction[A, B] with Product with Serializable
  5. trait FormalExtension[A] extends AdjDiffbleFunction[A, A]
  6. case class Id[A]() extends AdjDiffbleFunction[A, A] with Product with Serializable
  7. case class Incl1[A, B]()(implicit evidence$1: LinearStructure[B]) extends AdjDiffbleFunction[A, (A, B)] with Product with Serializable
  8. case class Incl2[A, B]()(implicit evidence$2: LinearStructure[A]) extends AdjDiffbleFunction[B, (A, B)] with Product with Serializable
  9. case class IteratedDiffble[X](fn: AdjDiffbleFunction[X, X], n: Int) extends AdjDiffbleFunction[X, X] with Product with Serializable
  10. case class Oplus[A, B, C, D](first: AdjDiffbleFunction[A, B], second: AdjDiffbleFunction[C, D]) extends AdjDiffbleFunction[(A, C), (B, D)] with Product with Serializable
  11. case class Proj1[A, B]()(implicit evidence$3: LinearStructure[B]) extends AdjDiffbleFunction[(A, B), A] with Product with Serializable
  12. case class Proj2[A, B]()(implicit evidence$4: LinearStructure[A]) extends AdjDiffbleFunction[(A, B), B] with Product with Serializable
  13. case class ScProd[V]()(implicit evidence$9: LinearStructure[V], evidence$10: InnerProduct[V]) extends AdjDiffbleFunction[(Double, V), V] with Product with Serializable
  14. case class SelfAdj[A](func: (A) => A) extends AdjDiffbleFunction[A, A] with Product with Serializable
  15. case class Sum[A, B](first: AdjDiffbleFunction[A, B], second: AdjDiffbleFunction[A, B])(implicit evidence$18: LinearStructure[A], evidence$19: LinearStructure[B]) extends AdjDiffbleFunction[A, B] with Product with Serializable
  16. case class Zero[A, B]()(implicit evidence$20: LinearStructure[A], evidence$21: LinearStructure[B]) extends AdjDiffbleFunction[A, B] with Product with Serializable

Value Members

  1. def apply[A, B](f: => (A) => B)(grd: => (A) => (B) => A): AdjDiffbleFunction[A, B]
  2. def block[A, B, C, D](f: AdjDiffbleFunction[A, C], g: AdjDiffbleFunction[B, D])(implicit arg0: LinearStructure[A], arg1: LinearStructure[B], arg2: LinearStructure[C], arg3: LinearStructure[D]): AdjDiffbleFunction[(A, B), (C, D)]
  3. def consIterateDiffble[X](fn: AdjDiffbleFunction[X, X], n: Int): AdjDiffbleFunction[X, X]
  4. implicit def diffFnLS[A, B](implicit arg0: LinearStructure[A], arg1: LinearStructure[B]): LinearStructure[AdjDiffbleFunction[A, B]]
  5. def id[A]: AdjDiffbleFunction[A, A]
  6. def iterate[A](f: AdjDiffbleFunction[A, A]): (Int) => AdjDiffbleFunction[A, A]
  7. def iterateDiffble[X](fn: AdjDiffbleFunction[X, X], n: Int): AdjDiffbleFunction[X, X]
  8. def mixinIsle[A](f: AdjDiffbleFunction[A, A], isle: (AdjDiffbleFunction[A, A]) => AdjDiffbleFunction[A, A], normalize: AdjDiffbleFunction[A, A] = id[A])(implicit arg0: LinearStructure[A]): (Int) => AdjDiffbleFunction[A, A]
  9. def recIterateDiffble[X](fn: AdjDiffbleFunction[X, X], n: Int, accum: AdjDiffbleFunction[X, X] = id[X]): AdjDiffbleFunction[X, X]

    Iterate a differentiable function.

    Iterate a differentiable function.

    Annotations
    @tailrec()
  10. def repsquare[A](f: AdjDiffbleFunction[A, A])(implicit arg0: LinearStructure[A]): (Int) => AdjDiffbleFunction[A, A]

    raise a function to 2^(n -1) wrt composition, so for n = 0 we get identity and n = 1 gives f.

  11. implicit def vecSpaceDiffFn[A, B](implicit vsA: VectorSpace[A, Double], vsB: VectorSpace[B, Double]): VectorSpace[AdjDiffbleFunction[A, B], Double]