object EntropyAtomWeight extends Serializable
- Alphabetic
- By Inheritance
- EntropyAtomWeight
- Serializable
- AnyRef
- Any
- Hide All
- Show All
- Public
- Protected
Value Members
- final def !=(arg0: Any): Boolean
- Definition Classes
- AnyRef → Any
- final def ##: Int
- Definition Classes
- AnyRef → Any
- final def ==(arg0: Any): Boolean
- Definition Classes
- AnyRef → Any
- def apply[A, B](genDist: FiniteDistribution[A], pDist: FiniteDistribution[B], qDist: FiniteDistribution[B], elem: B, initWeight: Double, hW: Double, klW: Double): EntropyAtomWeight
More natural (but verbose) description of spire gradients for entropy tradeoff
More natural (but verbose) description of spire gradients for entropy tradeoff
- A
the type of objects of the initial distribution, e.g. terms
- B
the type of objects of the final distribution, e.g. types
- genDist
the initial generating distribution
- pDist
the initial "theorem by proof" distribution
- qDist
the initial "theorem by statement" distribution
- elem
the lemma whose weight is learned
- initWeight
the weight of the initial distribution in the final one
- final def asInstanceOf[T0]: T0
- Definition Classes
- Any
- def clone(): AnyRef
- Attributes
- protected[lang]
- Definition Classes
- AnyRef
- Annotations
- @throws(classOf[java.lang.CloneNotSupportedException]) @native() @HotSpotIntrinsicCandidate()
- final def eq(arg0: AnyRef): Boolean
- Definition Classes
- AnyRef
- def equals(arg0: AnyRef): Boolean
- Definition Classes
- AnyRef → Any
- def evolvedLemmaGens(ev: EvolvedStateLike, hW: Double, klW: Double): Vector[(Typ[Term], EntropyAtomWeight)]
- def evolvedLemmaIters(ev: EvolvedStateLike, hW: Double, klW: Double, sc: Double = 1, prune: Boolean = false): Vector[(Typ[Term], Iterator[Double])]
- def findGoal(init: TermState, base: TermState, tg: TermGenParams, steps: Int, maxDepth: Int, cutoff: Double, hW: Double, klW: Double, limit: FiniteDuration = 3.minutes, sc: Double = 1): Task[FiniteDistribution[Term]]
- final def getClass(): Class[_ <: AnyRef]
- Definition Classes
- AnyRef → Any
- Annotations
- @native() @HotSpotIntrinsicCandidate()
- def hashCode(): Int
- Definition Classes
- AnyRef → Any
- Annotations
- @native() @HotSpotIntrinsicCandidate()
- final def isInstanceOf[T0]: Boolean
- Definition Classes
- Any
- def lemmaDist(ev: EvolvedStateLike, steps: Int, hW: Double, klW: Double, sc: Double = 1): FiniteDistribution[Term]
- def lemmaWeights(ev: EvolvedStateLike, steps: Int, hW: Double, klW: Double, sc: Double = 1): Vector[(Typ[Term], Double)]
- final def ne(arg0: AnyRef): Boolean
- Definition Classes
- AnyRef
- final def notify(): Unit
- Definition Classes
- AnyRef
- Annotations
- @native() @HotSpotIntrinsicCandidate()
- final def notifyAll(): Unit
- Definition Classes
- AnyRef
- Annotations
- @native() @HotSpotIntrinsicCandidate()
- def proofWeightIter(ev: EvolvedStateLike, pf: Term, weight: Double, cutoff: Double, hW: Double, klW: Double, sc: Double = 1, prune: Boolean = false): Iterator[Double]
- def proofWeightTuned(ev: EvolvedStateLike, pf: Term, weight: Double, cutoff: Double, steps: Int, hW: Double, klW: Double, sc: Double = 1, prune: Boolean = false): Option[(Term, Double)]
- final def synchronized[T0](arg0: => T0): T0
- Definition Classes
- AnyRef
- def toString(): String
- Definition Classes
- AnyRef → Any
- def tunedProofs(ev: EvolvedStateLike, pfs: Vector[(Term, Double)], cutoff: Double, steps: Int, hW: Double, klW: Double, sc: Double = 1, prune: Boolean = false): Vector[(Term, Double)]
- final def wait(arg0: Long, arg1: Int): Unit
- Definition Classes
- AnyRef
- Annotations
- @throws(classOf[java.lang.InterruptedException])
- final def wait(arg0: Long): Unit
- Definition Classes
- AnyRef
- Annotations
- @throws(classOf[java.lang.InterruptedException]) @native()
- final def wait(): Unit
- Definition Classes
- AnyRef
- Annotations
- @throws(classOf[java.lang.InterruptedException])
Deprecated Value Members
- def finalize(): Unit
- Attributes
- protected[lang]
- Definition Classes
- AnyRef
- Annotations
- @throws(classOf[java.lang.Throwable]) @Deprecated
- Deprecated