Packages

o

provingground.learning

FiniteDistributionLearner

object FiniteDistributionLearner

A combinator for learning systems with state finite distributions on vertices. Systems are built from components labeled by elements of a set M. The state also has weights for these components. The components are built from: moves (partial functions), partial combinations and islands.

Linear Supertypes
AnyRef, Any
Ordering
  1. Alphabetic
  2. By Inheritance
Inherited
  1. FiniteDistributionLearner
  2. AnyRef
  3. Any
  1. Hide All
  2. Show All
Visibility
  1. Public
  2. Protected

Type Members

  1. case class Atom[V](x: V) extends AdjDiffbleFunction[Double, FiniteDistribution[V]] with Product with Serializable

    An atom for a finite distribution

  2. case class CombinationFn[V](f: (V, V) => Option[V], firstFilter: (V) => Boolean = (a: V) => true) extends AdjDiffbleFunction[FiniteDistribution[V], FiniteDistribution[V]] with Product with Serializable
  3. case class Evaluate[V](x: V) extends AdjDiffbleFunction[FiniteDistribution[V], Double] with Product with Serializable

    Evaluation at a point for a finite distribution

  4. case class ExtendM[M, X](fn: AdjDiffbleFunction[(FiniteDistribution[M], X), X]) extends AdjDiffbleFunction[(FiniteDistribution[M], X), (FiniteDistribution[M], X)] with Product with Serializable
  5. case class MoveFn[V, W](f: (V) => Option[W]) extends AdjDiffbleFunction[FiniteDistribution[V], FiniteDistribution[W]] with Product with Serializable

    smooth function applying move wherever applicable

  6. case class NewVertex[V](v: V) extends AdjDiffbleFunction[(Double, FiniteDistribution[V]), FiniteDistribution[V]] with Product with Serializable

    Add a new vertex, mainly for lambdas

  7. case class NormalizeFD[V]() extends AdjDiffbleFunction[FiniteDistribution[V], FiniteDistribution[V]] with Product with Serializable

    Normalizing a finite distribution.

  8. case class ProjectV[M, X]() extends AdjDiffbleFunction[(FiniteDistribution[M], X), X] with Product with Serializable
  9. case class PtwiseProd[V](sc: (V) => Double) extends AdjDiffbleFunction[FiniteDistribution[V], FiniteDistribution[V]] with Product with Serializable
  10. case class Sample[X](N: Double) extends FormalExtension[FiniteDistribution[X]] with Product with Serializable

Value Members

  1. final def !=(arg0: Any): Boolean
    Definition Classes
    AnyRef → Any
  2. final def ##: Int
    Definition Classes
    AnyRef → Any
  3. final def ==(arg0: Any): Boolean
    Definition Classes
    AnyRef → Any
  4. final def asInstanceOf[T0]: T0
    Definition Classes
    Any
  5. def clone(): AnyRef
    Attributes
    protected[lang]
    Definition Classes
    AnyRef
    Annotations
    @throws(classOf[java.lang.CloneNotSupportedException]) @native() @HotSpotIntrinsicCandidate()
  6. final def eq(arg0: AnyRef): Boolean
    Definition Classes
    AnyRef
  7. def equals(arg0: AnyRef): Boolean
    Definition Classes
    AnyRef → Any
  8. def extendM[M, X](fn: AdjDiffbleFunction[(FiniteDistribution[M], X), X]): AdjDiffbleFunction[(FiniteDistribution[M], X), (FiniteDistribution[M], X)]

    Extend differentiable function by identity on M.

  9. final def getClass(): Class[_ <: AnyRef]
    Definition Classes
    AnyRef → Any
    Annotations
    @native() @HotSpotIntrinsicCandidate()
  10. def hashCode(): Int
    Definition Classes
    AnyRef → Any
    Annotations
    @native() @HotSpotIntrinsicCandidate()
  11. final def isInstanceOf[T0]: Boolean
    Definition Classes
    Any
  12. final def ne(arg0: AnyRef): Boolean
    Definition Classes
    AnyRef
  13. final def notify(): Unit
    Definition Classes
    AnyRef
    Annotations
    @native() @HotSpotIntrinsicCandidate()
  14. final def notifyAll(): Unit
    Definition Classes
    AnyRef
    Annotations
    @native() @HotSpotIntrinsicCandidate()
  15. def projectV[M, X]: AdjDiffbleFunction[(FiniteDistribution[M], X), X]
  16. def purgeFD[V](size: Int)(fd: FiniteDistribution[V]): FiniteDistribution[V]

    purging (randomly) a finite distribution.

    purging (randomly) a finite distribution.

    size

    upper bound on the expected size of the support.

  17. def sample[X](N: Double): AdjDiffbleFunction[FiniteDistribution[X], FiniteDistribution[X]]
  18. def sampleV[M, V](N: Double): AdjDiffbleFunction[(FiniteDistribution[M], FiniteDistribution[V]), (FiniteDistribution[M], FiniteDistribution[V])]
  19. final def synchronized[T0](arg0: => T0): T0
    Definition Classes
    AnyRef
  20. def toString(): String
    Definition Classes
    AnyRef → Any
  21. final def wait(arg0: Long, arg1: Int): Unit
    Definition Classes
    AnyRef
    Annotations
    @throws(classOf[java.lang.InterruptedException])
  22. final def wait(arg0: Long): Unit
    Definition Classes
    AnyRef
    Annotations
    @throws(classOf[java.lang.InterruptedException]) @native()
  23. final def wait(): Unit
    Definition Classes
    AnyRef
    Annotations
    @throws(classOf[java.lang.InterruptedException])
  24. def weightedDyn[M, X](implicit arg0: LinearStructure[X], arg1: InnerProduct[X]): (M, AdjDiffbleFunction[X, X]) => AdjDiffbleFunction[(FiniteDistribution[M], X), X]

    Returns a smooth function (FD[M], X) => X, given a parameter index m : M and a dynamical system f: X => X; the system f should correspond to m.

    Returns a smooth function (FD[M], X) => X, given a parameter index m : M and a dynamical system f: X => X; the system f should correspond to m. For a distribution p in FD[M], if p(m) denotes the value at m, the smooth function being defined is p(m)f.

Deprecated Value Members

  1. def finalize(): Unit
    Attributes
    protected[lang]
    Definition Classes
    AnyRef
    Annotations
    @throws(classOf[java.lang.Throwable]) @Deprecated
    Deprecated

Inherited from AnyRef

Inherited from Any

Ungrouped